CRYSTALLIZATION behavior of polypropylene/graphene nanoplatelets (PP/GnPs) nanocomposite fiber was studied by means of differential scanning calorimetry. PP/GnPs nanocomposite fibers containing different amounts of GnPs were prepared with and without a compatibilizer, maleic anhydride-grafted polypropylene (PP-g-MA), and then isothermal CRYSTALLIZATION kinetics was investigated at different CRYSTALLIZATION temperatures by Avrami and Lauritzen-Hoffman equations. The results show that heterogeneous nucleation occurs easily in the presence of GnPs even at higher temperatures and thereby the CRYSTALLIZATION rate of PP in the PP/GnPs fiber increased. Moreover, upon inclusion of PP-g-MA, relative crystallinity-time curves shifted to the shorter times. The Avrami equation revealed that although GnPs and PP-g-MA have nucleation effect, the crystal growth of PP is restricted in the PP/PP-g-MA/GnPs nanocomposite fiber, increasing the CRYSTALLIZATION half-time. Furthermore, Avrami exponent of approximately 3 for neat PP and 2 for PP/GnPs is consistent with three-dimensional crystal growth process and two-dimensional crystal growth, respectively. According to Lauritzen-Hoffman equation, the nucleation parameter decreased with the addition of GnPs, suggesting that the GnPs act as a nucleating agent and also reduced the interfacial free energy.