Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Author(s): 

Soltani Masih Vali

Issue Info: 
  • Year: 

    2023
  • Volume: 

    8
  • Issue: 

    4
  • Pages: 

    81-91
Measures: 
  • Citations: 

    0
  • Views: 

    67
  • Downloads: 

    11
Abstract: 

Let's denote $\mathcal{S}^{\ast}(f_c)$ as a family of analytic functions $f(z)=z+a_2z^2+a_3z^3+\cdots$ in the open unit disk $\mathbb{D}$ that satisfy the following relation for $c\in (0,1)$:$$\frac{zf'(z)}{f(z)}\prec f_c(z)=\frac{1}{\sqrt{1-cz}}, \quad z\in\mathbb{D}.$$First, we introduce the analytic functions $f_c(z)$ and examine their starlike and positivity properties of the real part. Then, we obtain their images in the open unit disk $\mathbb{D}$, which are Cassini ovals. Cassini ovals, due to their properties, have applications in solving various problems in fields such as geometry, physics, and mathematics. These curves are used in studying the motion of waves and electromagnetic waves in interstellar spaces, as well as in the design of engineering structures such as telescopes. In this article, with the help of integrals, we investigate the structure of mappings in this family and some properties including maximum and minimum moduli, bounds of the real part of these functions. Moreover, we obtain the relationships between the defined geometric ranks with this family, including the order of starlikeness and order of strong starlikeness.1. IntroductionLet $\mathcal{A}$ be a set of analytic functions of the form $f(z)=z+a2z^2+a3z^3+\cdots$ in the open unit disc $\mathbb{D}:=\left\{z\in\mathbb{C}\colon |z|<1\right\}$. A function $f\in\mathcal{A}$ is called univalent if it is one-to-one. In [5], two classes of starlike and convex functions with order $0\le \beta<1$ are defined as follows:\begin{equation}\label{starlike-convex}\mathcal{S}^{\ast}(\beta):=\left\{f\in\mathcal{A}\colon \Re\left(\frac{zf'(z)}{f(z)}\right)>\beta\right\},\quad \mathcal{K}(\beta):=\left\{f\in\mathcal{A}\colon zf'(z)\in\mathcal{S}^{\ast}(\beta)\right\}.\end{equation}Similarly, in [2], the class of functions called strongly starlike with order $0<\alpha\le 1$ is defined as:\[\mathcal{SS}^{\ast}(\alpha)=\left\{f\in\mathcal{A}\colon \left|\mathrm{Arg}\frac{zf'(z)}{f(z)}\right|<\frac{\alpha \pi}{2}\right\}.\]If $f$ and $g$ are two analytic functions in $\mathbb{D}$, we say that $f$ is subordinate to $g$ \cite{Dur}, denoted by $f\prec g$, if and only if there exists an analytic function $w$ with $w(0)=0$ such that for all $z\in\mathbb{D}$:\[\left|w(z)\right|<1, \quad f(z)=g(w(z)).\]If $g$ is univalent, we have:\[f(z)\prec g(z) \Longleftrightarrow f(0)=g(0),\quad f(\mathbb{D})\subset g(\mathbb{D}).\]Given $c\in(0,1)$, analytic functions $f_c$ are defined as follows:(1.2)$$f_c(z):=\frac{1}{\sqrt{1-cz}}=1+\frac{c}{2}z+\frac{3c^2}{8}z^2+\cdots$$in the principal branch of the complex logarithm, where $\log 1=0$. These functions are univalent in $\mathbb{D}$ and map the open unit disc $\mathbb{D}$ into the interior of the Cassinian ovals given by the Cartesian equation:\begin{equation}\label{Cassinian-Ovals}(x^2+y^2)^2-\frac{2}{1-c^2}(x^2-y^2)+\frac{1}{1-c^2}=0,\end{equation}or the polar equation:\begin{equation}\label{Cassinian-Ovals1}r^4-\frac{2r^2 }{1-c^2} \cos(2\theta)=\frac{1}{c^2-1}.\end{equation} 2. Main ResultsIn this section, we will first derive the structure of functions in the class $\mathcal{S}^{\ast}(f_c)$, and then using the stated theorems, we will determine the order of starlikeness and strongly starlikeness of functions in the class $\mathcal{S}^{\ast}(f_c)$. Theorem 2.1. A function $f$ belongs to the class $\mathcal{S}^{\ast}(f_c)$ if and only if there exists a function $p \prec f_c$ such that\begin{equation}\label{thm-1-0}f(z)=z\exp\left(\int_{0}^{z}\frac{p(t)-1}{t}dt\right), \quad z\in\mathbb{D}.\end{equation} If we set $p(z)=f_c(z)$ in theorem (2.1), then we get(2.2) $$F_c(z):=z\exp\left(\int_{0}^{z}\frac{f_c(t)-1}{t}dt\right)=\frac{4z}{(1+\sqrt{1-cz})^2}, \quad z\in\mathbb{D}.$$This function $F_c(z)$ is an extreme function for the class $\mathcal{S}^{\ast}(f_c)$. Figure 2 illustrates the image of the open unit disk $\mathbb{D}$ under the mapping $F_c(z)$ for $c=3/4$. Theorem 2.2. Let $f_c$ be the given function described in (1.2). Then $f_c$ is convex and satisfies the following conditions:\begin{equation}\label{max-min0}\max_{|z|=r<1}\left|f_c(z)\right|=f_c(r),\quad \min_{|z|=r<1}\left|f_c(z)\right|=f_c(-r).\end{equation} In the following theorem, we obtain bounds for the real part and strongly starlike mappings of the functions $f_c$. Theorem 2.3. Suppose $c\in(0,1)$. Then we have the following:(1) \[f_c(\mathbb{D})\subset \left\{w\in\mathbb{C}\colon \frac{1}{\sqrt{1+c}}<\Re(w)<\frac{1}{\sqrt{1-c}}\right\},\](2)\[f_c(\mathbb{D})\subset \left\{w\in\mathbb{C}\colon \left|\mathrm{Arg}(w)\right|<\frac12 \arccos\sqrt{1-c^2}\right\}.\] Theorem 2.4. If $f\in \mathcal{S}^{\ast}(fc)$ and $|z|=r<1$, then the following hold:(1) \[\frac{zf'(z)}{f(z)}\prec \frac{zF'_c(z)}{F_c(z)},\quad \frac{f(z)}{z}\prec\frac{F_{c}(z)}{z},\](2) \[F'_c(-r)\le \left|f'(z)\right|\le F'_c(r),\](3) \[-F_c(-r)\le |f(z)|\le F_c(r),\](4) \[\left|\arg{(f(z)/z)}\right|\le \max{|z|=r}\arg\left(\frac{1}{(1+\sqrt{1-cz})^2}\right),\](5) Either $f$ is a rotation of $F_c$ or\[\left\{w\in \mathbb{C} \colon\ |w|\leq-F_c(-1)=\frac{4}{(1+\sqrt{1+c})^2}\right\}\subsetf(\mathbb{D}),\]where in all cases, the function $F_c$ is defined as per equation (2.2).\end{thm}In the following theorem, we determine the subordination order and strong subordination order for the class of functions $\mathcal{S}^{\ast}(f_c)$. Theorem 2.5. The class of functions $\mathcal{S}^{\ast}(f_c)$ has the following properties:(1) For $0\le \beta\le \frac{1}{\sqrt{1+c}}$, we have\[\mathcal{S}^{\ast}(f_c)\subset \mathcal{S}^{\ast}(\beta).\](2) For $\frac{1}{\pi}\arccos\sqrt{1-c^2}\le \alpha\le 1$, we have\[\mathcal{S}^{\ast}(f_c)\subset \mathcal{SS}^{\ast}(\alpha).\] 3. ConclusionsThe class $\mathcal{S}^{\ast}(f_c)$ consists of functions that can be represented in a specific form involving the function $f_c$, which is a special function related to the starlikeness property. The function $F_c(z)$, derived from $f_c(z)$, is an extreme function for the class $\mathcal{S}^{\ast}(f_c)$ and has specific properties, including convexity and bounds on its maximum and minimum modulus on the unit circle. The presented theorems provide bounds for the real part of the functions $f_c$ and establish relationships related to subordination and strong subordination order for the class of functions $\mathcal{S}^{\ast}(f_c)$. Overall, the obtained theorems and their proofs contribute to understanding the structural properties, order of starlikeness and strongly starlikeness, as well as subordination order within the class of functions $\mathcal{S}^{\ast}(f_c)$, for different values of the parameter $c$.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 11 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Mahzoon Hesam

Issue Info: 
  • Year: 

    2022
  • Volume: 

    6
  • Issue: 

    27
  • Pages: 

    61-68
Measures: 
  • Citations: 

    0
  • Views: 

    196
  • Downloads: 

    0
Abstract: 

Let $Delta$ be the open unit disc in the complex plane $mathbb{C}$, i. e. $Delta={zin mathbb{C}: |z|< 1}$ and $mathcal{H}(Delta)$ be the class of functions that are analytic in $Delta$. Also, let $mathcal{A}subset mathcal{H}(Delta)$ be the class of functions that have the following Taylor--Maclaurin series expansion begin{equation*} f(z)=z+sum_{n=2}^{infty} a_nz^nquad(zinDelta). end{equation*} Thus, if $finmathcal{A}$, then it satisfies the following normalized condition begin{equation*} f(0)=0=f'(0)-1. end{equation*} The set of all univalent (one--to--one) functions $f$ in $Delta$ is denoted by $mathcal{U}$. Also, we denote by $mathcal{LU}subset mathcal{H}$ the class of all locally univalent functions in $Delta$. Let $f$ and $g$ belong to class $mathcal{H}(Delta)$. Then we say that a function $f$ is subordinate to $g$, written by begin{equation*} f(z)prec g(z)quad{rm or}quad fprec g, end{equation*} begin{linenomath} if there exists a Schwarz function $w$ with the following properties begin{equation*} w(0)=0quad{rm and}quad |w(z)|0}$, $varpi(0)=1$ and $varphi'(0)>0$.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 196

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2021
  • Volume: 

    6
  • Issue: 

    28
  • Pages: 

    115-120
Measures: 
  • Citations: 

    0
  • Views: 

    199
  • Downloads: 

    0
Abstract: 

We know that ameromorphic function, is an analytic function on domain D such that, its single singular points on domain D, are of pole type. These functions are also called regular functions. Recently, meromorphic convex functions of order α have been defined and their properties have been investigated. In this paper, at first we introduce the meromorphic convex functions of inverse order α . In fact, convex functions of order revers α are a special class of analytic functions on unit open disk U that satisfy the following property: R(1+(f^' (z))/(zf^'' (z)))

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 199

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    7
  • Issue: 

    3
  • Pages: 

    99-108
Measures: 
  • Citations: 

    0
  • Views: 

    216
  • Downloads: 

    0
Abstract: 

در این مقاله مدل دقیقی از بخش الکترواپتیکی سامانه ردیاب ستاره و نحوه تشکیلِ تصویرِ ستاره ارایه شده است. سپس از این مدل برای تشخیص ستاره ها از نوفه با معرفی شیوه خاص در تعیین مقدار آستانه، در تصویرِ گرفته شده توسط ردیاب ستاره استفاده گردیده است. با بهره گیری از نظریه آشکارسازی اثبات شده که روش سطح آستانه، آشکارساز بهینه ی ستاره ها در تصویر می باشد و نحوه تعیین مقدار سطح آستانه بهینه با توجه به مشخصات ردیاب ستاره بدست آمده است. همچنین نشان داده شده که اثر محل قرارگیری تصویر ستاره نسبت به مکان پیکسل های حسگر تصویربرداری تا چه میزان بر روشنایی تصویر ستاره و در نتیجه سطح آستانه ی بهینه موثر است. این متغیر در مقالات به صورت دقیق بررسی نشده است و عدم در نظرگرفتن این مساله سبب انتخاب سطح آستانه نادرست خواهد شد. مقدار سطح آستانه اهمیت بسیار زیادی دارد چون از یک سو با افزایش سطح آستانه، ستاره ها از دست خواهند رفت و از سوی دیگر با کاهش آن، نوفه ها به عنوان ستاره تشخیص داده می شوند که این امر سبب افزایش زمان محاسبات و یا عدم امکان تعیین وضعیت می گردد.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 216

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    0
  • Views: 

    231
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 231

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    385
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 385

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    2
  • Views: 

    314
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 314

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    324
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 324

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    -
  • Issue: 

    34
  • Pages: 

    0-0
Measures: 
  • Citations: 

    0
  • Views: 

    229
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 229

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    1
  • Issue: 

    1
  • Pages: 

    0-0
Measures: 
  • Citations: 

    2
  • Views: 

    350
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 350

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button