مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

24
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Mappings between the lattices of varieties of submodules

Pages

  35-50

Keywords

‎‎ ‎$omega$-module‎ 

Abstract

 Let $R$ be a commutative ring with identity and $M$ be an $R$-module. It is shown that the usual lattice $\mathcal{V}(_{R}M)$ of varieties of submodules of $M$ is a distributive lattice. If $M$ is a semisimple $R$-module and the unary operation $^{\prime}$ on $\mathcal{V}(_{R}M)$ is defined by $(V(N))^{\prime}=V(\tilde{N})$, where $M=N\oplus \tilde{N}$, then the lattice $\mathcal{V}(_{R}M)$ with $^{\prime}$ forms a Boolean algebra. In this paper, we examine the properties of certain mappings between $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$, in particular considering when these mappings are lattice homomorphisms. It is shown that if $M$ is a faithful primeful $R$-module, then $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$ are isomorphic lattices, and therefore $\mathcal{V}(_{R}M)$ and the lattice $\mathcal{R}(R)$ of radical ideals of $R$ are anti-isomorphic lattices. Moreover, if $R$ is a semisimple ring, then $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$ are isomorphic Boolean algebras, and therefore $\mathcal{V}(_{R}M)$ and $\mathcal{L}(R)$ are anti-isomorphic Boolean algebras.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button