مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

93
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

A Parallel and Efficient Algorithm for Detecting Overlapping Communities in Social Networks

Pages

  245-258

Abstract

 Social networks are not only tools for communication but also represent one of the key potentials in business and commerce. One of the most significant issues in this field is clustering nodes and extracting effective and useful patterns from them, known as community detection. A major challenge in community detection within social networks is the vast number of nodes, which makes any kind of analysis difficult. Another challenge is the overlap of cluster members, referred to as overlapping communities. In such networks, each node may belong to multiple groups. Considering overlaps between communities—especially in large-scale networks—poses significant challenges in accurately detecting and identifying communities. Therefore, many studies tend to overlook this issue. In this paper, an approach is proposed to address these challenges. The most time-consuming step in the proposed algorithm, identifying influential nodes, is performed in parallel. Moreover, overlaps between communities are taken into account and analyzed. The results of evaluating the proposed method, in comparison with other existing methods, indicate its superiority in terms of the uniformity of the detected communities.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button