فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی









متن کامل


نویسندگان: 

MIRZAEI H. | Heydarnoori A.

نشریه: 

Scientia Iranica

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    26
  • شماره: 

    3 (Transactions D: Computer Science and Engineering and Electrical Engineering)
  • صفحات: 

    1567-1588
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    297
  • دانلود: 

    0
چکیده: 

In software programs, most of the time, there is a chance for occurrence of faults in general, and exception faults in particular. Localizing those pieces of code that are responsible for a particular fault is one of the most complicated tasks, and it can produce incorrect results if done manually. Semi-automated and fully-automated techniques have been introduced to overcome this issue. However, despite recent advances in fault localization techniques, they are not necessarily applicable to Android applications because of their special characteristics such as context-awareness, use of sensors, being executable on various mobile devices, limited hardware resources, etc. To this aim, in this paper, a semi-automated hybrid method is introduced that combines static and dynamic analyses to localize exception faults in Android applications. Our evaluations of nine open source Android applications of di erent sizes with various exceptions show that the technique proposed in this paper can correctly identify root causes of the occurred exceptions. These results indicate that our proposed approach is e ective in practice in localizing exception faults in Android applications.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 297

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

BJORNTORP P.

اطلاعات دوره: 
  • سال: 

    1996
  • دوره: 

    239
  • شماره: 

    2
  • صفحات: 

    105-110
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    105
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 105

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    11
  • شماره: 

    3
  • صفحات: 

    49-55
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    74
  • دانلود: 

    20
چکیده: 

با افزایش ضریب نفوذ اینترنت در زندگی و استفاده آحاد مردم از این فناوری در همه ابعاد، به کارگیری از دستگاه های گوشی تلفن همراه نیز به همین نسبت افزایش داشته است. این موضوع در کنار خلق مزایای فراوان، موجب گسترش و تسریع انتشار برخی برنامه های مخرب به نام بدافزار  گردیده است. در این پژوهش سعی بر آن است که با استفاده از شبکه عصبی چندلایه و یادگیری ماشین تشخیص بدافزارهای روز صفر  در تلفن های هوشمند صورت گیرد. برای این منظور از دیتاست  استاندارد با بیش از 15 هزار نمونه از انواع بدافزار و خوب افزار به صورت برچسب گذاری شده بهره گیری شده است. در مرحله پیش پردازش ابتدا با استفاده از نرمال سازی و یکسان سازی داده ها انجام می شود و با تجزیه وتحلیل مؤلفه های اصلی عمل انتخاب ویژگی صورت گرفته و از تعداد 1183 ویژگی تعداد 215 ویژگی که واریانس بالاتری دارند انتخاب می شود و پس ازآن مدل پیشنهادی معرفی شده است که از طبقه بند شبکه عصبی چندلایه و الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری است که با اعمال آن بر روی پایگاه داده های ذکرشده و مقایسه نتایج طبقه بندی آن با الگوریتم های ماشین بردار، الگوریتم ژنتیک ، نزدیک ترین همسایه و ...  می توان دریافت که آموزش شبکه عصبی چندلایه یادگیری دقت و صحت را بالا می برد. نتایج استفاده از شبکه عصبی چندلایه مبتنی بر آموزش و یادگیری حاکی از دقت 99% و صحت 98% است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 74

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 20 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Nomiko D. | Bar A. | Monalisa M.

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    12
  • شماره: 

    2
  • صفحات: 

    181-187
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    7
  • دانلود: 

    0
چکیده: 

Aims: Breast cancer is among the most common cancer types. This study aimed to develop an Android-based detection application for assessing breast cancer risk. Materials & Methods: This quasi-experimental study utilized a research and development approach, employing a pre- and post-test design with one group. The development and field-testing phase took place between July and August 2023, involving 59 women of childbearing age purposively selected within the operational vicinity of Puskesmas Simpang IV Sipin, Jambi City, Indonesia. The application successfully underwent testing, including evaluation by media and material validators. Subsequently, a comprehension test was conducted with three respondents individually, ten individuals in a small group, and 59 participants in a large group. In the field test, data are presented descriptively, including frequencies. The Wilcoxon test was utilized to determine a causal relationship between the product’s usage and the observed impact. Findings: The development of the breast cancer risk assessment application involved several key stages, including the identification stage (comprising problem analysis, context, and literature), the application model design stage, and the material and media validation stage. The media validation process was conducted twice, with the findings yielding a score of 67, averaging 3.35 (meeting valid criteria), while material validation received an average score of 3.0 (also meeting valid criteria). A Wilcoxon test conducted on the knowledge variable revealed a significant increase, with the mean value before the intervention at 8.44 and post-intervention rising to 12.29. Conclusion: Women of childbearing age readily accept Android-based breast cancer risk detection applications, and their usage has a positive impact on increasing their knowledge.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    31
  • دانلود: 

    0
چکیده: 

The increasing expansion of mobile phones along with the expansion of the possibilities of these phones has provided a suitable field for information theft. Android is undoubtedly the most popular and widespread operating system of mobile phones, which has become the target audience of many malware authors due to this expansion. This article seeks to provide a suitable and powerful solution for detecting malware. Data processing uses a combined feature selection operation. This idea extracts the most important features and improves the accuracy and speed of detection. Then, three-level stacking is used for the detection stage. This method can significantly improve the accuracy and power of generalization compared to other methods based on the innovative idea of dataset separation. The accuracy of this method is equal to 99. 5.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 31

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    14
  • شماره: 

    3
  • صفحات: 

    51-59
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    68
  • دانلود: 

    0
چکیده: 

With the widespread use of Android smartphones, the Android platform has become an attractive target for cybersecurity attackers and malware authors. Meanwhile, the growing emergence of zero-day malware has long been a major concern for cybersecurity researchers. This is because malware that has not been seen before often exhibits new or unknown behaviors, and there is no documented defense against it. In recent years, deep learning has become the dominant machine learning technique for malware detection and could achieve outstanding achievements. Currently, most deep malware detection techniques are supervised in nature and require training on large datasets of benign and malicious samples. However, supervised techniques usually do not perform well against zero-day malware. Semi-supervised and unsupervised deep malware detection techniques have more potential to detect previously unseen malware. In this paper, we present MalGAE, a novel end-to-end deep malware detection technique that leverages one-class graph neural networks to detect Android malware in a semi-supervised manner. MalGAE represents each Android application with an attributed function call graph (AFCG) to benefit the ability of graphs to model complex relationships between data. It builds a deep one-class classifier by training a stacked graph autoencoder with graph convolutional layers on benign AFCGs. Experimental results show that MalGAE can achieve good detection performance in terms of different evaluation measures.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 68

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

DEYPIR MAHMOOD | SHARIFI EHSAN

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    4
  • شماره: 

    4
  • صفحات: 

    244-254
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    254
  • دانلود: 

    0
چکیده: 

Android has been targeted by malware developers since it has emerged as widest used operating system for smartphones and mobile devices. Android security mainly relies on user decisions regarding to installing applications (apps) by approving their requested permissions. Therefore, a systematic user assistance mechanism for making appropriate decisions can significantly improve the security of Android based devices by preventing malicious apps installation. However, the criticality of permissions and the security risk values of apps are not well determined for users in order to make correct decisions. In this study, a new metric is introduced for effective risk computation of untrusted apps based on their required permissions. The metric leverages both frequency of permission usage in malwares and rarity of them in normal apps. Based on the proposed metric, an algorithm is developed and implemented for identifying critical permissions and effective risk computation. The proposed solution can be directly used by the mobile owners to make better decisions or by Android markets to filter out suspicious apps for further examination. Empirical evaluations on real malicious and normal app samples show that the proposed metric has high malware detection rate and is superior to recently proposed risk score measurements. Moreover, it has good performance on unseen apps in term of security risk computation.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 254

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

دی پیر محمود

اطلاعات دوره: 
  • سال: 

    1396
  • دوره: 

    5
  • شماره: 

    1 (پیاپی 17)
  • صفحات: 

    73-83
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    917
  • دانلود: 

    253
چکیده: 

با گسترش روز افزون بدافزارها در اندروید به عنوان پرکاربردترین سیستم عامل همراه، دانستن میزان خطر امنیتی هر نرم افزار می تواند در اعلام هشدار به کاربر نسبت به استفاده از بدافزارهای احتمالی، موثر باشد. مخاطرات امنیتی نرم افزارهای اندروید از طریق مجوزهای درخواستی آنها قابل تخمین است. در این مقاله با توجه به میزان سوء استفاده از مجوزهای درخواستی توسط بدافزارهای شناخته شده قبلی، مفهوم مجوز بحرانی به صورت دقیقتری تعریف شده است. بر اساس این تعریف و با تحلیل مجوزهای درخواستی توسط بدافزارها و نرم افزارهای مفید شناخته شده، معیار جدیدی به منظور اندازه گیری خطر امنیتی نرم افزارهای اندروید ارائه شده است. در این معیار مجوزهایی اثر بیشتری در محاسبه مقدار خطر امنیتی دارند که بهره اطلاعاتی بیشتری در تمایز بدافزارها داشته باشند. آزمایشهای صورت گرفته نشان دهنده نرخ تشخیص بالاتر و قابلیت تعمیم پذیری بیشتر معیار ارائه شده نسبت به معیارهای قبلی است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 917

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 253 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    38
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 38

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

manifard Ali | MAJIDI BABAK

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    41
  • دانلود: 

    0
چکیده: 

Android devices are providing about 70% of the web traffic. Therefore, the security of the Android devices is one of the major factors impacting the web security. Autonomous detection of the malware infecting Android devices using machine learning methods can act as a scalable solution for security provision on smartphones. This study aims to introduce an innovative approach for detecting mobile phone malware by leveraging users' emotional reactions and interactions with their devices during sudden and unpredictable events. Traditional mobile malware detection methods that rely on permissions and API calls have extensively been researched, yet they often overlook human elements such as emotions and their potential implications in this context. The methodology proposed in this research involves capturing users' reactive behaviors to unexpected events using Natural Language Processing (NLP), analyzing their interactive patterns with mobile phones through clustering techniques, and employing machine learning algorithms and classification methods for malware detection. The experimental results show that the proposed method can provide an accuracy of more than 96% which provides an efficient tool for Android and web security.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 41

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button