video

sound

Persian Version

View:

577

Download:

118

Cites:

Information Journal Paper

Title

ENTROPY ESTIMATE FOR MAPS ON FORESTS

Author(s)

GOLBAHARAN A. | SABAGHAN M.

Pages

  65-74

Keywords

Abstract

 A 1993 result of J. Llibre, and M. Misiurewicz, (Theorem A [5]), states that if a continuous map f of a GRAPH into itself has an s-horseshoe, then the topological ENTROPY of f is greater than or equal to logs, that is h(f)³ logs. Also a 1980 result of L.S. Block, J. Guckenheimer, M. Misiurewicz and L.S. Young (Lemma 1.5 [3]) states that if G is an A-graph of f then h(G) £ h( f ). In this paper we generalize Theorem A and Lemma 1.5 for continuous functions on FORESTs. Let F be a FOREST and f : F®F be a continuous function. By using the adjacency matrix of a GRAPH, we give a lower bound for the topological ENTROPY of f.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    GOLBAHARAN, A., & SABAGHAN, M.. (2010). ENTROPY ESTIMATE FOR MAPS ON FORESTS. JOURNAL OF SCIENCES ISLAMIC REPUBLIC OF IRAN, 21(1), 65-74. SID. https://sid.ir/paper/84079/en

    Vancouver: Copy

    GOLBAHARAN A., SABAGHAN M.. ENTROPY ESTIMATE FOR MAPS ON FORESTS. JOURNAL OF SCIENCES ISLAMIC REPUBLIC OF IRAN[Internet]. 2010;21(1):65-74. Available from: https://sid.ir/paper/84079/en

    IEEE: Copy

    A. GOLBAHARAN, and M. SABAGHAN, “ENTROPY ESTIMATE FOR MAPS ON FORESTS,” JOURNAL OF SCIENCES ISLAMIC REPUBLIC OF IRAN, vol. 21, no. 1, pp. 65–74, 2010, [Online]. Available: https://sid.ir/paper/84079/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops