مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

53
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

3
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

مقایسه کارایی هیدرولیکی سرریزهای غیر خطی قوسی در پلان با استفاده از شبکه های عصبی GEP و SVM

صفحات

 صفحه شروع 179 | صفحه پایان 199

چکیده

 سرریزهای غیرخطی ضمن دارا بودن مزیت های اقتصادی, قابلیت عبوردهی بیشتری را نسبت به سرریزهای خطی دارند. این سرریزها با افزایش طول تاج در یک عرض مشخص, در مقایسه با سرریزهای خطی راندمان دبی بیشتر با ارتفاع آزاد کمتر را در بالادست دارند. الگوریتم های هوشمند به دلیل توانایی زیاد در کشف رابطه های دقیق پیچیدۀ مخفی بین پارامترهای مستقل مؤثر و پارامتر وابسته و همچنین صرفه جویی مالی و زمانی, جایگاه بسیار ارزشمندی بین پژوهشگران پیدا کرده اند. در این پژوهش عملکرد الگوریتم های ماشین بردار پشتیبان (SVM) و برنامه ریزی بیان ژن (GEP) در پیش بینی ضریب دبی سرریزهای غیرخطی قوسی به کمک 243 سری دادۀ آزمایشگاهی برای سناریو اول و 247 سری داده آزمایشگاهی برای سناریو دوم بررسی شده است. پارامترهای هندسی و هیدرولیکی استفاده شده شامل بار آبی (HT/p), ارتفاع سرریز (P), نسبت بار آبی کل , زاویه سیکل قوسی (Ɵ), زاویه دیواره سیکل(α) و ضریب دبی (Cd) است. نتایج هوش مصنوعی نشان داد که ترکیب پارامترهای (H_T/p ,α ,Ɵ و Cd) به ترتیب در الگوریتم های GEP و SVM در مرحلۀ آموزش مربوط به سناریو اول (سرریز کنگره¬ای با زاویۀ دیوارۀ سیکل 6 درجه) به ترتیب برابر است با (0/9811=R2), (RMSE=0/02120), (DC=0/9807), (R2=0/9896), (RMSE=0/0189), (DC=0/9871). (در سناریو دوم (سرریز کنگره ای با زاویۀ دیوارۀ سیکل 12 درجه) به ترتیب برابراست با (0/9770=R2),(RMSE=0/0193), (DC=0/9768) و (9908/0=R2), (RMSE=0/0128), (DC=0/9905) که در مقایسه با دیگر ترکیب ها منجر به بهینه ترین خروجی شده است که نشان دهنده دقت بسیار مطلوب هر دو الگوریتم در پیش بینی ضریب دبی سرریز غیرخطی قوسی است. نتایج آنالیز حساسیت نشان داد که پارامتر مؤثر در تعیین ضریب دبی سرریز غیرخطی قوسی در GEP و هم در SVM پارامتر نسبت بار آبی کل (HT/p) است. مقایسه نتایج این پژوهش با سایر پژوهشگران نشان می دهد که شاخصه های ارزیابی برای الگوریتم های GEP و SVM پژوهش حاضر نسبت به سایر پژوهشگران برآورد بهتری دارند.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button