مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

148
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Distinguished pairs of algebraic elements

Pages

  197-208

Abstract

 Let v be a henselian valuation on a field K, and v ̃,be its unique extension to the algebraic closure K ̃,of K. An element α, ∈, K ̃, K has a distinguished pair if the corresponding set M(α, , K) (defined as the following) has a maximum element M(α, , K)={v ̃, (α,-β, )┤, β,in K ̃, , [K(β, ) ∶, K]<[K(α, ) ∶, K]}. In this case, a pair (α, , β, ) of elements of K ̃,is a distinguished pair for α,whenever β,is an element of smallest degree over K such that deg⁡, α, >deg⁡, β,and v ̃, (α,-β, )=supM(α, , K). In this paper, we first present some results about distinguished pairs of algebraic elements of arbitrary degree over henselian valued fields. Then considering the importance of algebraic elements of prime degree in the extensions of valued fields, we concentrate on such elements. In particular, for α, ∈, K ̃,of prime degree over K, we give a necessary and sufficient condition for the existence of the maximum of the corresponding set M(α, , K) by using the minimal polynomial of α,over K.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Nikseresht, َAzadeh. (2022). Distinguished pairs of algebraic elements. JOURNAL OF NEW RESEARCHES IN MATHEMATICS, 8(37 ), 197-208. SID. https://sid.ir/paper/1065019/en

    Vancouver: Copy

    Nikseresht َAzadeh. Distinguished pairs of algebraic elements. JOURNAL OF NEW RESEARCHES IN MATHEMATICS[Internet]. 2022;8(37 ):197-208. Available from: https://sid.ir/paper/1065019/en

    IEEE: Copy

    َAzadeh Nikseresht, “Distinguished pairs of algebraic elements,” JOURNAL OF NEW RESEARCHES IN MATHEMATICS, vol. 8, no. 37 , pp. 197–208, 2022, [Online]. Available: https://sid.ir/paper/1065019/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button