تحليل ارتباط بین توزیع جوامع گیاهی و عوامل اقليمی و فیزیوگرافیک با استفاده از روشهای طبقه بندی و رسته بندی در مراتع ریشه

زنبیل جعفریان جلخدار ۱، حسین ارژینی ۲، محمد جعفری ۳، قلم الدين زاهدی ۴ و حسین امیرنیاود ۵

چکیده

هدف اصلی این تحقیق درک ارتباط بین فاکتورهای اقليمی و فیزیوگرافیک و گونه‌های گیاهی بود تا اینکه به‌عنوان موثرترین فاکتورهای تعیین کننده بی‌پای گیاهی در مراتع ریشه مشخص شود. برای نمونه برداری از چند روشهای گیاهی از روش نمونه‌گیری طبقه‌بندی تصادفی ساخته شد. در هر واحد نمونه برداری تعداد ۱۰ تا ۲۰ بیوله تصادفی در هر دو مستند گردید و در پلاتها ليست گونه‌ها، تعداد آنها در مورد پوشش آنها و غیره گزارش گردید. موقعیت جغرافیایی نقاط نمونه برداری با GPS برداشت شد و داده‌های فیزیوگرافی مربوط به نقاط نمونه برداری نیز از نقشه‌های مربوطه استخراج گردید. میانگین داده‌های حرارت، میانگین حداکثر حرارت، میانگین دما روزانه، میانگین رطوبت نسبی، بارندگی‌ها و روزهای یخبندان به عنوان فاکتورهای اقليمی انتخب گردیدند و این تحقیق برای درک بهر این ارتباط هم از روشهای طبقه بندی شامل PCA، DCA، CCA و آنالیز چگی و آنالیز تغییر از TWINSPAN استفاده شده است. با استفاده از طبقه‌بندی تمقمیم شد. روش‌های آنالیز چند متغیره شامل PCA، DCA، CCA و آنالیز تغییر از TWINSPAN استفاده گردید. هم‌سنجی واحدهایی از ۳ مدل PCA، DCA، و CCA با استفاده از ۸۰/۴۴٪ واریانس به‌عنوان داده‌های معنی‌داری با عوامل اقليمی مورد مطالعه و ارتفاع را نشان می‌دهند. در این محقق اصولی DCA یک محور اصلی و گرداین عوامل اقليمی و ارتفاع را نشان می‌دهد. آنالیز CCA نشان می‌دهد که فاکتورهای محیطی مهم دیگری مثل تأثیر گذار بر پوشش گیاهی در منطقه همستخ تا جمله عوامل خاکی و بیولوژیکی که باید در مطالعات بعدی مورد نظر قرار گیرند.

واژه‌های کلیدی: مراتع ریشه، رسته بندی، طبقه بندی، آنالیز چند متغیره، عوامل اقليمی، عوامل فیزیوگرافیک

۱- دانشجوی دکتری علوم مرتع دانشکده منابع طیبیه دانشگاه تهران
۲- استاد دانشکده منابع طیبیه دانشگاه تهران
۳- استاد دانشکده منابع طیبیه دانشگاه تهران
۴- دانشیار دانشکده منابع طیبیه دانشگاه تهران
۵- استاد بر دانشکده منابع طیبیه دانشگاه تهران
مقدمه
بررسی ارتباط بین گونه‌های گیاهی و متغیرهای محیطی یکی از اهداف بسیاری از مطالعات بوم شناختی بوده است (مک دونالد، 1996؛ جعفری و همکاران، 2004). همچنین بوم شناسان روزی متغیرهای کنترلی کننده توزیع و ترکیب گونه‌های گیاهی مطالعه کرده اند (گلتن و همکاران، 2002). در این میان اهمیت اقلیمی برای توصیف توزیع گونه‌ها در اولین قرن 19 تحقیق داده شد (هامبولست و پولانست، 1807) اقلیمی در ترکیب با دیگر فاکتورهای محیطی برای توضیح یکی راه‌برد استفاده کرده‌اند (ویلرز، رودزغ و همکاران، 1981؛ گلتن و همکاران، 1999). در این تحقیق برای درک بیشتر این ارتباط هم از روش‌های طبقه‌بندی شامل PCA، DCA، CCA و تحلیل مشترک آنتاژی جهان استفاده شد و هم از روش‌های TWINSPAN استفاده شده است.

آنالیز تحلیل آنتاژی، ترکیب DNA و انواع گیاهی از نظر احتمال و توانایی تغییر بین گونه‌ها به تدریج بالا می‌گردد. این بررسی‌ها به‌طور عمده داری با شرایط محیطی مرتب است. در مقابل حفاظتی کمی شود. به‌طور کلی این مطالعه درک ارتباط بین فاکتورهای اقلیمی و

فیزیوفیزیولوژی و گونه‌های گیاهی بود تا
مونترین فاکتورهای تعبیه کننده تبیه‌ای
گیاهی مشخص شود. معمولاً برای کمی کردن
ارتباط بین متغیرها و گونه‌های گیاهی،
محفظان برای افزایش دقت تجزیه و تحلیلها
مجسم به محدود کردن تعداد متغیرهای
بررسی می‌شوند. به‌عنوان دلیل در این تحقیق
تنهای تأثیر عوامل اقلیمی و فیزیوفیزیولوژی
یک روش غیردبایی شده است.

محققین برای بررسی ارتباط بین یک روش
گیاهی و عوامل محیطی از روش‌های آنتاژی چند
متغیره استفاده کردن (ویلرز، رودزغ و
همکاران، 1981؛ جعفری و همکاران،
1999). در این تحقیق برای درک بیشتر این ارتباط هم از
روش‌های طبقه‌بندی شامل PCA، DCA، CCA و
تحلیل مشترک آنتاژی جهان استفاده شد و هم از روش‌های
TWINSPAN استفاده شده است.

آنالیز TWINS PAN یک روش شمارشی
یا عدید برای طبقه‌بندی نمونه‌های گیاهی
در گروه‌های مشابه است (جاسون، 1995;
آکسین و منچین، 1997) و یک روش
مقسوم و سلسله مرتبی محصور می‌شود
(گاج و وینتکر، 1981). یک تکنیک
رسته بندی است که متغیر توربیک ایجاد می
کند تا بعد از رازش خط مستقیم به داده‌های
گونه‌ها مجموع محورهای ایجاد شده و در اینجا برای توصیف اولیه متغیرها از

11 - Villers-Ruiz et al
12 - Clark et al
13 - Johnson
14 - Oksanen & Minchin
15 - Gauch & Whittaker

www.SID.ir
آن استفاده شده است. تکنیک DCA رسته بندی غیر مستقل است (ویتارک، 1967) که داده‌های فلوورپسیک مستقل از داده‌های محیطی رسته بندی می‌کند.

نمونه‌هایی که از نظر ساختار بوش گیاهی شیبته به یکدیگر هستند، در دیاگرام توزیع گیاهی توسط آن رسته بندی کانولوک نسبت به رگرسیون آسانتر بوده و به داده‌های کمتر تیز دارد. بیشترین شده با یکدیگر استفاده شده تا ارزیابی کند که چه مقدار از تغییرات در گونه‌ها توسط داده‌های محیطی قابل محاسبه اند (تبرک، 1986).

تکنیک CCA تعیین اثرات ویژه متغیرها را به مقدار زیادی توسه می‌دهد و نشان داده که مدل قوی برای تعیین ارتباط بین گونه‌ها و محیط آنها می‌باشد (رید و همکاران 1993). این مدل به ارتباطات خطی محدود نمی‌شود و می‌تواند ارتباط تک نمایی بین گونه‌ها و فاکتورهای محیطی را نشان دهد (باشکین و همکاران 2003).

سوالات اصلی مطرح در این تحقیق به صورت ذیل می‌باشند: چگونه تبیه‌های بوش مرتبط با توجه به ترکیب فلوورپسیکی متمایز می‌شوند؟ کدام ویژگی‌های اقلیمی و فیزیوگرافیک مورد مطالعه، مهمترین فاکتورهای تأثیرگذار بر حضور گونه‌های موجود در منطقه مطالعه هستند؟

1 - Whittaker
2 - Ter Braak
3 - Reed
4 - Bashkin
نوع جریانهای گدازه تراکی اندزئی می‌باشد، لذا به عنوان یک عامل طبقه‌بندی حذف گردید، جن بدلیل یکسان بودن آن در کل منطقه تأثیر آن بر پوشش گیاهی قابل بررسی نبود.

نقشه‌های تویوگرافی 250000/1 منطقه از سازمان نقشه برداری تهیه شد. سپس این نقشه‌ها اسکن گردید و در ترم افزار تُئورفِنس شده، نقشه‌های تُئورفِنس شده

جمع آوری داده‌ها برای نمونه برداری از پوشش گیاهی از روش نمونه‌گیری طبقه‌بندی نما و گِوس استفاده شد. به این منظور ابتدا منطقه مورد مطالعه بر اساس ارتفاع، شبیه جهت و زمین‌شناسی به تعدادی طبقه‌ی واحد هم‌کن نمونه برداری تقسیم شد.

از آنجا که زمین‌شناسی منطقه فقط از یک

1 - Hirzel & Giusan
ویوگرافی یه کمک نرم افزار Arc view برای ساخت نقشه Idrisi در نرم افزار برنامه‌نویسی استفاده گردید. سپس با استفاده از نقشه DEM نهشیاب ارتفاع، شب و جهت تهیه گردید و هر کدام در چند کلاس طبقه بندی شدند. در مرحله بعد نقشه های طبقات ارتفاع، طبقات چهت و طبقات شب و روبه روب نهشیاب گزاری شد. در این طبقات ارتفاع، چهت و شب، به روش Arc view، استفاده گردید. در این طبقات، ارتفاع، چهت و شب، به روش Arc view، استفاده گردید. در این طبقات، ارتفاع، چهت و شب، به روش Arc view، استفاده گردید.

جدول 1: طبقات نقشه های ارتفاع، شب و چهت

<table>
<thead>
<tr>
<th>شب</th>
<th>ارتفاع به متر</th>
<th>چهت به درجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>135-0</td>
<td>20-0</td>
<td>2400 ></td>
</tr>
<tr>
<td>225-135</td>
<td>50-20</td>
<td>2900-2400</td>
</tr>
<tr>
<td>360-225</td>
<td>50 <</td>
<td>3400-2900</td>
</tr>
<tr>
<td>3400 <</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نمونه برداری از بوشک گیاهی در فصل روش‌های گیاهی منطقه (خرداد و تیر) از ارتفاعات پایین آغاز گردید و ارتفاعات بالاتر که فصل رویشی به دلیل شرایط آب و هوا بی تأخیر می‌افتد، در پایان نمونه برداری شد. در هر واحد نمونه برداری تعداد 10 پلاست 1 متر مرغوبیطرش تصادفی در منطقه کلیدی یا معرف بسته به وسعت واحد بک یا دو منطقه معرف انتخاب شد. مستقر گردید و در پایانشانه نمونه‌های تعداد آنها و درصد بوشک آنها به

1 - Digital Elevation Model
2 - overlay
3 - noise
جدول 2: متغیرهای اقلیمی مطالعه‌شده با علائم اختصاصی کار رفته در آنالیز

<table>
<thead>
<tr>
<th>علائم اختصاصی</th>
<th>واحد اندازه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>mhrb</td>
<td>میانگین رطوبت نسبی فصل پاییز</td>
</tr>
<tr>
<td>mrht</td>
<td>میانگین رطوبت نسبی فصل تابستان</td>
</tr>
<tr>
<td>mrhs</td>
<td>میانگین رطوبت نسبی سال‌های دامنه‌گیری</td>
</tr>
<tr>
<td>mml</td>
<td>میانگین بارندگی فصل پاییز</td>
</tr>
<tr>
<td>mmn</td>
<td>میانگین بارندگی فصل تابستان</td>
</tr>
<tr>
<td>mmr</td>
<td>میانگین بارندگی سال‌های دامنه‌گیری</td>
</tr>
<tr>
<td>mmp</td>
<td>میانگین روزهای بی‌بیش سال‌های دامنه‌گیری</td>
</tr>
<tr>
<td>mmpb</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbt</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbs</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpsb</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsb</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbs</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb2</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb3</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb4</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb5</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb6</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb7</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb8</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb9</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb10</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb11</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb12</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb13</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb14</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb15</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb16</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb17</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb18</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb19</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb20</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb21</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb22</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb23</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb24</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb25</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb26</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb27</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb28</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb29</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb30</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb31</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb32</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb33</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb34</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb35</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb36</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb37</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb38</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb39</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb40</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb41</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb42</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb43</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb44</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb45</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb46</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb47</td>
<td>میانگین نسبт بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb48</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb49</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb50</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb51</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb52</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb53</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb54</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb55</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb56</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb57</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb58</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb59</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb60</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb61</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb62</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb63</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
<tr>
<td>mmpbsbsb64</td>
<td>میانگین نسبت بارانیتی در تابستان</td>
</tr>
<tr>
<td>mmpbsbsb65</td>
<td>میانگین نسبت بارانیتی در پاییز</td>
</tr>
<tr>
<td>mmpbsbsb66</td>
<td>میانگین نسبت بارانیتی در دامنه‌گیری</td>
</tr>
</tbody>
</table>
| mmpbsbsb67 | میانگی

تجزیه و تحلیل داده‌ها

برای آنالیز مؤثر گونه‌ها و فاکتورهای محیطی مربوط به گونه‌ها و نسبت بندی استفاده شد. این دو تکنیک به کمک نرم‌افزار PCORD ورژن 4 (مک کوتین و میفرد، 1999) انجام شد. برای ساده کردن ترکیب گیاهی و درک هر از ارتباط بین عوامل محیطی و گونه‌ها، پلای‌های نمونه به گونه‌های مشابه با آنالیز PCA طبقه‌بندی 2 TWINSPAN روش یک جدول دو طرفه طبقه‌بندی تولید می‌شود که ارتباطات نمونه‌ها و گونه‌ها را بیان کرده و در سطوح مختلف تغییر گره‌های مشابه قابل کاربرد است. این گره‌های مشابه بر اساس نمرات پویش فراوانی دنبام‌با الفتره و یا بهترین آزمون روش تیپسیسم نمونه در

3 - McCune & Grace
4 - Cluster Analysis
5 - Ward
6 - Principle Components Analysis

1 - McCune & Mefford
2 - Two-Way Indicator Species Analysis

www.SID.ir
استندار، استندار شدن. آقای تطبیقی نازی ۱ (هیل و گاج، ۱۹۸۰) برای تعمین برخی تغییر در ترکیب گونه‌ای در طول ولایت محور رسته بندی (یعنی طول گرداگیران در ارتفاع استندارد) به کار رفت. در مطالعه حاجر DCA گرداگیران ترکیبی در داده‌های پوشش گیاهی را برگردد از ۵ روش CCA SD تخمین زد. بنابراین آقای اصلی SD مناسب ویلی بندی برای آقای گرداگیران مستقیم است (تبرک و پرانتس، ۱۹۸۸). آقای تطبیقی کانونیک (CCA) آقای گرداگیران مستقیم است که نمایی ارتباط بین داده‌های پوشش گیاهی و مغزه‌های محیطی به کار رفت است (تبرک و پرانتس، ۱۹۸۸). معنی داری داری همبستگی گونه با محیط با تست مونت کارلو با ۹۹ تکرار بررسی شد. تست مونت کارلو برای آزمون معنی داری ارزش‌های ویژه اولین محور کانونیک استفاده می‌شود (جوانم و همکاران، ۱۹۸۵).

نتایج
در کل منطقه حدود ۱۰۷ گونه گیاهی شامل شده که با استفاده از طبقه‌بندی با مقایسه پوشش – ترکیبی ۱۱ دانه‌می‌باشد. ۷۵ سایت مورد مطالعه به ۱۰ جامعه زیر تقسیم شد:

1- Detrended Correspondence Analysis
2- Hill & Gauch
3- Ter Braak & Prentice
4- Canonical Correspondence Analysis
5- Jean & Bouchard
6- Palmer
7- Monte Carlo
8- Jongman
تحلیل ارتباط بین توزیع جوامع گیاهی و عوامل اقلیمی و فیزیوگرافیک

صحت طبقه بنیانی از انجام شده با آنالیز TWINSPLAN با انواع آنالیز خوشه ای آزمون شد و نتایج مشابهی با آنالیز مذکور بدست آمد (شکل 3).

\(\text{n=129, } \% 11/5, \text{ این گروه 5 سایت نمونه را در بر گرفته است.} \)

\(\text{Onorychis corunata} \) جامعه به ترتیب با بوشیه 18\% و \(\text{Festuca ovina} \) این گروه 4 سایت نمونه را در بر گرفته است.

\(\text{N}=31, \text{ Eigen}=0.323/4 \)

\(\text{N}=71, \text{ Eigen}=2.055/4 \)

\(\text{N}=24, \text{ Eigen}=8.521/4 \)

\(\text{N}=77, \text{ Eigen}=1.815/4 \)

\(\text{N}=5, \text{ Eigen}=0.037/4 \)

\(\text{N}=2, \text{ Eigen}=0.8443/4 \)

\(\text{N}=24, \text{ Eigen}=2.443/4 \)

\(\text{N}=70, \text{ Eigen}=7.024/4 \)

\(\text{N}=5, \text{ Eigen}=0.421/4 \)

\(\text{N}=0, \text{ Eigen}=0.447/4 \)

\(\text{N}=1, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)

\(\text{N}=0, \text{ Eigen}=0.4471/4 \)

\(\text{N}=0, \text{ Eigen}=0.0421/4 \)
برای تعیین موثرترین ویژگی‌های مورد مطالعه در تفکیک تیبه‌های گیاهی آنالیز PCA برای 19 فاکتور محیطی مورد نظر و 107 گونه گیاهی انجام شد که نتایج آن در جدول 3 آمده است. 10 محرور اول با هم 99.92٪ کل واریانس در داده‌های محیطی را توصیف می‌کنند. ۹۹.۳۴٪ واریانس با استفاده از 3 مؤلفه اول توصیف می‌شوند و محرور اول به مهار اساسی عوامل قضیه‌ریز گونه‌ها می‌باشد.

جدول ۳ نتایج مربوط به ۱۰ محرور اول آنالیز PCA انجام شده بر روی عوامل محیطی

<table>
<thead>
<tr>
<th>محرورها</th>
<th>مقدار واریانس</th>
<th>مقدار واریانس</th>
<th>مقدار واریانس</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16904</td>
<td>16904</td>
<td>16904</td>
</tr>
<tr>
<td>2</td>
<td>133</td>
<td>133</td>
<td>133</td>
</tr>
<tr>
<td>3</td>
<td>839</td>
<td>839</td>
<td>839</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

www.SID.ir
نتایج
نیشان دهنده درگیری در ترکیب گونه‌ای در طول این گردبان است. بنابراین
گردبانان در طول محوک اول طولانیتر از 5
بوعد است. مدل‌های پاپش خطی فاقد
اعتبار است (جانم و همکاران 1987) و
پیشنهاد می‌گردد.

شکل 4: موقعیت سایتهای نمونه برداری حاصل از آنالیز

جدول 4: مقایسه همبستگی های 3 محوک اول آنالیزهای

<table>
<thead>
<tr>
<th></th>
<th>عوامل اقلیمی و</th>
<th>CCA</th>
<th>DCA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>محوک اول</td>
<td>محور دوم</td>
<td>محور سوم</td>
</tr>
<tr>
<td>0/009</td>
<td>0/000</td>
<td>0/945</td>
<td>0/324</td>
</tr>
<tr>
<td>0/010</td>
<td>-0/009</td>
<td>0/968</td>
<td>0/333</td>
</tr>
<tr>
<td>0/000</td>
<td>0/008</td>
<td>0/972</td>
<td>0/329</td>
</tr>
<tr>
<td>-0/011</td>
<td>-0/008</td>
<td>-0/971</td>
<td>0/330</td>
</tr>
<tr>
<td>0/009</td>
<td>-0/008</td>
<td>0/968</td>
<td>0/337</td>
</tr>
<tr>
<td>0/013</td>
<td>-0/001</td>
<td>0/964</td>
<td>0/338</td>
</tr>
<tr>
<td>-0/017</td>
<td>-0/060</td>
<td>-0/965</td>
<td>-0/344</td>
</tr>
<tr>
<td>-0/061</td>
<td>-0/032</td>
<td>0/955</td>
<td>0/337</td>
</tr>
<tr>
<td>0/015</td>
<td>0/001</td>
<td>0/965</td>
<td>0/336</td>
</tr>
<tr>
<td>0/012</td>
<td>0/001</td>
<td>0/964</td>
<td>0/337</td>
</tr>
<tr>
<td>0/013</td>
<td>0/000</td>
<td>0/964</td>
<td>0/338</td>
</tr>
<tr>
<td>0/017</td>
<td>0/003</td>
<td>0/961</td>
<td>0/338</td>
</tr>
<tr>
<td>0/012</td>
<td>0/000</td>
<td>0/964</td>
<td>0/337</td>
</tr>
<tr>
<td>0/012</td>
<td>0/001</td>
<td>0/970</td>
<td>0/335</td>
</tr>
<tr>
<td>0/012</td>
<td>0/012</td>
<td>0/964</td>
<td>0/338</td>
</tr>
<tr>
<td>-0/013</td>
<td>-0/012</td>
<td>-0/970</td>
<td>-0/329</td>
</tr>
<tr>
<td>0/034</td>
<td>0/019</td>
<td>0/147</td>
<td>0/592</td>
</tr>
<tr>
<td>0/119</td>
<td>-0/049</td>
<td>-0/168</td>
<td>0/477</td>
</tr>
</tbody>
</table>
هدلِ هلو پژوهش‌های برون‌گروهی فاکتورهای اقلیمی و فیزیوگرافی با 3 محور اول CCA که در جدول 4 آمده است، این تکات برای ایده که محور اول اقلیمی و ارتفاع با همبستگی بالا و معنی دارد، داشته که گرادیان عوامل اقلیمی و ارتفاع را نشان می‌دهد. محورهای بعدی همبستگی بالایی با عوامل محیطی مطالعه شده تنداند (شکل 5).

جدول 5: نتایج آنالیز CCA

<table>
<thead>
<tr>
<th>محور دوم</th>
<th>محور اول</th>
<th>مقدار وزن</th>
<th>درصد واریانس توصیف شده</th>
<th>درصد توده‌ای واریانس توصیف شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.286</td>
<td>0.365</td>
<td>0.548</td>
<td>3/8</td>
<td>104/3</td>
</tr>
<tr>
<td>0.160</td>
<td>0.294</td>
<td>0.573</td>
<td>3/8</td>
<td>77/3</td>
</tr>
</tbody>
</table>

همبستگی های گونه و محیط برای محور اول کانونک با بالاتر از محورهای دیگر هستند (جدول 5) و حدود 16% از واریانس توصیف می‌کند. این نتایج در تجربه توصیف‌یار کننده این محور اول گونه‌های دیگر محورهای محیطی نشان داده شده‌اند.

شاکل 5: موقعیت متفاوت‌های محیطی و گونه‌های غالب نسبت به محور اول و دوم حاصل از آنالیز CCA
بحث و نتیجه گیری

در این تحقیق ارتباط بین توزیع گونه‌های گیاهی و ویژگی‌های اقلیمی و فیزیوگرافیک با استفاده از تکنیک‌های طبقه‌بندی و رسم دنبال آزمون شد. استفاده از روش‌های آنالیز چند متغیره بدلیل دقت زیاد این روش‌ها در تجزیه و تحلیل عوامل محیطی موثر بر بخش گیاهی یا روش‌های طبیعی یا ساده کردن ارتباط بین عوامل محیطی و بخش گیاهی بود. محاسبه دیگر توصیه شده است (جعفری و همکاران 1381).

جدول 6: نتیجه آزمون مونت کارلو برای بررسی معنی داری مقادیر ویژه محورهای CCA

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>مقادیر</th>
<th>ویژه محورهای</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0/0101</td>
<td>0/281</td>
<td>0/548</td>
</tr>
<tr>
<td></td>
<td>0/0101</td>
<td>0/219</td>
<td>0/365</td>
</tr>
<tr>
<td></td>
<td>0/0101</td>
<td>0/191</td>
<td>0/286</td>
</tr>
</tbody>
</table>

شکل 6: موقعیت عوامل محیطی نسبت به محورهای اول و دوم حاصل از آنالیز CCA
بیان کردن که عوامل محیطی ارتفاع، بارندگی و درجه حرارت در پراکنش تیپ‌های گیاهی نقش دارند. نتایج تحقیق حاضر با این محققین همخوانی داشته و بیانگر تاثیر عوامل اقلیمی و فیزیوگرافی پراکنش گونه‌های گیاهی است. منطقه مورد مطالعه در جهت جنوبی کوی دماند قرار دارد و در کل منطقه آن‌گونه تغییر جهت مشاهده نشده که می‌تواند دلیل عدم تأثیر جهت بر گونه‌های گیاهی منطقه باشد. همچنین منطقه دارای شیب تقریباً یکنواختی است که تأثیر آن بر پوشش گیاهی منطقه تأثیر نشده است.

(شکل 6)

پراکنش و استقرار جواعم گیاهی بر اساس دامنه پردازشی گونه‌های گیاهی آنها نسبت به عوامل مختلف محیطی و طبیعت بوم شناختی آنها صورت می‌گیرد. بنابراین شاخت این عوامل محیطی مؤثر بر استقرار و پراکنش پوشش گیاهی می‌تواند در مورد آشامی با سازگاری گونه‌های بومی و به کارگیری آنها در فرآیند اصلاح و احیای مراتب کارآمد باشد. لذا پیشنویسی شود تحقیقات مشابه در مناطق مختلف مرتکب صورت گیرد. لازم به 16 CCA یادآوری است که نتایج آن با 16 تفاوت توانست گونه‌های باران‌گونه‌ها و کارگیری آنها در فرآیند اصلاح و احیای مراتب کارآمد باشد. لذا پیشنویسی شود تحقیقات مشابه در مناطق مختلف مرتکب صورت گیرد. لازم به 16 CCA یادآوری است که نتایج آن با تفاوت توانست گونه‌های باران‌گونه‌ها و کارگیری آنها در فرآیند اصلاح و احیای مراتب کارآمد باشد. لذا پیشنویسی شود تحقیقات مشابه در مناطق مختلف مرتکب صورت گیرد.

تمامی تکنیک‌های رسته بندی به کار گرفته شده در این مطالعه نتایج مشابهی را ارائه دادند و ارتباط اکثریت متغیرهای مطالعه شده با گونه‌های گیاهی را تأیید کرده‌اند.

ویژگی‌های مرتب با گونه‌های گیاهی در 2 گروه قابل تفکیک هستند: گروه اول شامل تمامی متغیرهای اقلیمی مطالعه‌شده و گروه دوم شامل ارتفاع است. پوشش گیاهی تا حد زیادی تحت تاثیر عوامل محیطی از قبیل اقلیم، خاک و بیشتر و بندر قرار گرفت (هواچک و همکاران، 1989). تغییرات اقلیم اثرات بیزی‌بر ساختار و عملکرد اکوسیستم‌های مرتکب و در توزیع و تراکم پوشش گیاهی دارد. در مناطق نیمه خشک هب نوسانات بارندگی وجود دارد این اثرات نیز به بیشترین میزان خود رسیده است (نیل و همکاران، 1973؛ هیئت‌های، 1968). پستی و بلندی بطور مستقیم با تأثیر بر عوامل محیطی دیگر مانند تأثیر افزایش ارتفاع بر کاهش درجه حرارت و غیر مستقیم از طریق تأثیر آن در تشکیل خاک بر جواعم گیاهی تأثیر می‌گذارد. تأثیر ارتفاع بر پوشش گیاهی توسط محققین دیگران نیز تأیید شده است (خادم الحسینی و همکاران، 1386). محض مش نیا و همکاران 1386، ایرانی، 1378، اسمیت و همکاران در سال 1990 عوامل بارندگی و ارتفاع از سطح دریا در مناطق نیمه خشک را تأثیر گذار بر پوشش گیاهی دانستند. همچنین ویلز-روتن و همکارانش در سال 2003

1. Holechek
2. Neal
3. Heyting
4. Smit

www.SID.ir
19. Iravani, M., 1998, Investigation of effective determining factors on three rangeland species habitat using ordination methods, papers of master of science in Rangeland management and Dedesertification, University of Esfahan.