Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   JOURNAL OF MATHEMATICAL EXTENSION   2018 , Volume 12 , Number 4; Page(s) 101 To 113.
 
Paper: 

The Arithmetical Rank of k-Complete Ideals

 
 
Author(s):  Dupont Luis Alfredo*, Mendoza Ramirez Daniel Gualtiero, Rodriguez Olivarez Miriam
 
* Department of Mathematics Faculty of Mathematics Universidad Veracruzana Xalapa, Ver., Mexico
 
Abstract: 
We introduce the notions of algebraic and arithmetic derivation. As an application, we use the combinatorial decomposition of an ideal to provide a constructive method to find the algebraic invariants, as the arithmetical rank, for a family of squarefree monomial ideals, the $k$--complete ideals $I_k^n, $ also known as squarefree Veronese ideals of degree $k$.
 
Keyword(s): arithmetical rank,Lyubeznik resolution,monomial ideal,projective dimension
 
 
References: 
  • Not Registered.
  •  
  •  
 
Citations: 
  • Not Registered.
 
+ Click to Cite.
APA: Copy

Dupont, L., & Mendoza Ramirez, D., & Rodriguez Olivarez, M. (2018). The Arithmetical Rank of k-Complete Ideals. JOURNAL OF MATHEMATICAL EXTENSION, 12(4), 101-113. https://www.sid.ir/en/journal/ViewPaper.aspx?id=667866



Vancouver: Copy

Dupont Luis Alfredo, Mendoza Ramirez Daniel Gualtiero, Rodriguez Olivarez Miriam. The Arithmetical Rank of k-Complete Ideals. JOURNAL OF MATHEMATICAL EXTENSION. 2018 [cited 2021June22];12(4):101-113. Available from: https://www.sid.ir/en/journal/ViewPaper.aspx?id=667866



IEEE: Copy

Dupont, L., Mendoza Ramirez, D., Rodriguez Olivarez, M., 2018. The Arithmetical Rank of k-Complete Ideals. JOURNAL OF MATHEMATICAL EXTENSION, [online] 12(4), pp.101-113. Available: https://www.sid.ir/en/journal/ViewPaper.aspx?id=667866.



 
  pdf-File
Yearly Visit 50
 
 
Latest on Blog
Enter SID Blog