Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   BANACH JOURNAL OF MATHEMATICAL ANALYSIS   2017 , Volume 11 , Number 1; Page(s) 223 To 238.
 
Paper: 

TRIANGULAR SUMMABILITY AND LEBESGUE POINTS OF 2-DIMENSIONAL FOURIER TRANSFORMS

 
 
Author(s):  WEISZ FERENC*
 
* 
 
Abstract: 

We consider the triangular q-summability of 2-dimensional Fourier transforms. Under some conditions on q, we show that the triangular ?-means of a function f belonging to the Wiener amalgam space W(L1,l¥)(R2)W(L1, l¥)(R2) converge to f at each modified strong Lebesgue point. The same holds for a weaker version of Lebesgue points for the so-called modified Lebesgue points of f?W(Lp,l¥)(R2)f?W(Lp,l¥)(R2) whenever 1<p<¥1<p<¥. Some special cases of the q-summation are considered, such as the Weierstrass, Abel, Picard, Bessel, Fejér, de La Vallée-Poussin, Rogosinski, and Riesz summations.

 
Keyword(s): FOURIER TRANSFORMS, TRIANGULAR SUMMABILITY, FEJER SUMMABILITY, θ-SUMMABILITY, LEBESGUE POINTS
 
 
References: 
  • Not Registered.
  •  
  •  
 
Citations: 
  • Not Registered.
 
+ Click to Cite.
APA: Copy

WEISZ, F. (2017). TRIANGULAR SUMMABILITY AND LEBESGUE POINTS OF 2-DIMENSIONAL FOURIER TRANSFORMS. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 11(1), 223-238. https://www.sid.ir/en/journal/ViewPaper.aspx?id=573203



Vancouver: Copy

WEISZ FERENC. TRIANGULAR SUMMABILITY AND LEBESGUE POINTS OF 2-DIMENSIONAL FOURIER TRANSFORMS. BANACH JOURNAL OF MATHEMATICAL ANALYSIS. 2017 [cited 2021August02];11(1):223-238. Available from: https://www.sid.ir/en/journal/ViewPaper.aspx?id=573203



IEEE: Copy

WEISZ, F., 2017. TRIANGULAR SUMMABILITY AND LEBESGUE POINTS OF 2-DIMENSIONAL FOURIER TRANSFORMS. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, [online] 11(1), pp.223-238. Available: https://www.sid.ir/en/journal/ViewPaper.aspx?id=573203.



 
  pdf-File
Yearly Visit 84
 
 
Latest on Blog
Enter SID Blog