Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   BANACH JOURNAL OF MATHEMATICAL ANALYSIS   2017 , Volume 11 , Number 1; Page(s) 188 To 206.
 
Paper: 

LP-MAXIMAL REGULARITY FOR A CLASS OF FRACTIONAL DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE 1<α≤2

 
 
Author(s):  LIZAMA CARLOS*, MURILLO ARCILA MARINA
 
* 
 
Abstract: 

By using Blunck’s operator-valued Fourier multiplier theorem, we completely characterize the existence and uniqueness of solutions in Lebesgue sequence spaces for a discrete version of the Cauchy problem with fractional order 1<a£2. This characterization is given solely in spectral terms on the data of the problem, whenever the underlying Banach space belongs to the UMD-class.

 
Keyword(s): MAXIMAL REGULARITY, LEBESGUE SEQUENCE, SPACES UMD BANACH SPACES, R-BOUNDEDNESS, LATTICE MODELS
 
 
References: 
  • Not Registered.
  •  
  •  
 
Citations: 
  • Not Registered.
 
+ Click to Cite.
APA: Copy

LIZAMA, C., & MURILLO ARCILA, M. (2017). LP-MAXIMAL REGULARITY FOR A CLASS OF FRACTIONAL DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE 1<α≤2. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 11(1), 188-206. https://www.sid.ir/en/journal/ViewPaper.aspx?id=573189



Vancouver: Copy

LIZAMA CARLOS, MURILLO ARCILA MARINA. LP-MAXIMAL REGULARITY FOR A CLASS OF FRACTIONAL DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE 1<α≤2. BANACH JOURNAL OF MATHEMATICAL ANALYSIS. 2017 [cited 2021October23];11(1):188-206. Available from: https://www.sid.ir/en/journal/ViewPaper.aspx?id=573189



IEEE: Copy

LIZAMA, C., MURILLO ARCILA, M., 2017. LP-MAXIMAL REGULARITY FOR A CLASS OF FRACTIONAL DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE 1<α≤2. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, [online] 11(1), pp.188-206. Available: https://www.sid.ir/en/journal/ViewPaper.aspx?id=573189.



 
  pdf-File
Yearly Visit 70
 
 
Latest on Blog
Enter SID Blog