Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   BANACH JOURNAL OF MATHEMATICAL ANALYSIS   2017 , Volume 11 , Number 1; Page(s) 188 To 206.
 
Paper: 

LP-MAXIMAL REGULARITY FOR A CLASS OF FRACTIONAL DIFFERENCE EQUATIONS ON UMD SPACES: THE CASE 1<α≤2

 
 
Author(s):  LIZAMA CARLOS*, MURILLO ARCILA MARINA
 
* 
 
Abstract: 

By using Blunck’s operator-valued Fourier multiplier theorem, we completely characterize the existence and uniqueness of solutions in Lebesgue sequence spaces for a discrete version of the Cauchy problem with fractional order 1<a£2. This characterization is given solely in spectral terms on the data of the problem, whenever the underlying Banach space belongs to the UMD-class.

 
Keyword(s): MAXIMAL REGULARITY, LEBESGUE SEQUENCE, SPACES UMD BANACH SPACES, R-BOUNDEDNESS, LATTICE MODELS
 
References: 
  • ندارد
 
  pdf-File tarjomyar Yearly Visit 106
 
Latest on Blog
Enter SID Blog