Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   IRANIAN JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY (PERSIAN)   DECEMBER 2017-JANUARY 2018 , Volume 30 , Number 5 ; Page(s) 405 To 418.
 
Paper: 

FUNCTIONAL GROUPS AND STRUCTURAL CHARACTERIZATION OF UNMODIFIED AND FUNCTIONALIZED LIGNIN BY TITRATION, ELEMENTAL ANALYSIS, 1H NMR AND FTIR TECHNIQUES

 
 
Author(s):  BAIRAMI HABASHI RAMIN, ABDOLLAHI MAHDI*
 
* DEPARTMENT OF POLYMER REACTION ENGINEERING, FACULTY OF CHEMICAL ENGINEERING, TARBIAT MODARES UNIVERSITY, TEHRAN, IRAN
 
Abstract: 

Lignin is the second most abundant polymer in the world after cellulose. Therefore, characterization of the structure and functional groups of lignin in order to assess its potential applications in various technical fields has become a necessity. One of the major problems related to the characterization of lignin is the lack of well-defined protocols and standards. In this paper, systematic studies have been done to characterize the structure and functional groups of lignin quantitatively using different techniques such as elemental analysis, titration and 1H NMR and FTIR techniques. Lignin as a black liquor was obtained from Choka Paper Factory and it was purified before any test. The lignin was reacted with a-bromoisobutyryl bromide to calculate the number of hydroxyl and methoxyl moles. Using 1H NMR spectroscopic method on a-bromoisobutyrylated lignin (BiBL) in the presence of a given amount of N, N-dimethylformamide (DMF) as an internal standard, the number of moles of hydroxyl and methoxyl groups per gram of lignin was found to be 6.44 mmol/g and 6.64 mmol/g, respectively. Using aqueous titration, the number of moles of phenolic hydroxyl groups and carboxyl groups of the lignin were calculated as 3.13 mmol/g and 2.84 mmol/g, respectively. The findings obtained by 1H NMR and elemental analysis indicated to phenyl propane unit of the lignin with C9 structural formula as C9 HAl3.84HAr2.19S0.2O0.8(OH)1.38(OCH3)1.42. Due to poor solubility of the lignin in tetrahydrofuran (THF), acetylated lignin was used in the GPC analysis, by which number-average molecular weight (M)n of the lignin was calculated as 992 g/mol.

 
Keyword(s): LIGNIN, CHEMICAL STRUCTURE AND FUNCTIONAL GROUP CHARACTERIZATION, SPECTROSCOPY, TITRATION, MOLECULAR WEIGHT
 
References: 
  • ندارد
 
  Persian Abstract Yearly Visit 58
 
Latest on Blog
Enter SID Blog