Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   INTERNATIONAL JOURNAL OF ADVANCED DESIGN AND MANUFACTURING TECHNOLOGY   SEPTEMBER 2014 , Volume 7 , Number 3; Page(s) 45 To 55.
 
Paper: 

FAULTS DIAGNOSIS OF A GIRTH GEAR USING DISCRETE WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORKS

 
 
Author(s):  AKBARI M., HOMAEI H., HEIDARI M.*
 
* DEPARTMENT OF MECHANICAL ENGINEERING, ABADAN BRANCH, ISLAMIC AZAD UNIVERSITY, ABADAN, IRAN
 
Abstract: 

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) was designed to diagnose different types of faults in gears. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet coefficients of normalized vibration signals have been selected. These features are considered as the feature vector for training purpose of the ANN. A wavelet selection criteria, namely Maximum Energy to Shannon Entropy ratio, was used to select an appropriate mother wavelet and discrete level, for feature extraction. To ameliorate the algorithm, various ANNs were exploited to optimize the algorithm so as to determine the best values for "number of neurons in hidden layer" resulted in a high-speed, meticulous three-layer ANN with a small-sized structure. The diagnosis success rate of this ANN was 100% for experimental data set. An experimental set of data has been used to verify the effectiveness and accuracy of the proposed method. To develop this method in general fault diagnosis application, an example was investigated in cement industry. At first, a MLP network with well-formed and optimized structure (20: 12: 3) and remarkable accuracy was presented providing the capability to identify different faults of gears. Then this neural network with optimized structure was presented to diagnose different faults of gears. The performance of the neural networks in learning, classifying and general fault diagnosis were found encouraging and can be concluded that neural networks have high potentiality in condition monitoring of the gears with various faults.

 
Keyword(s): ARTIFICIAL NEURAL NETWORK, DISCRETE WAVELET TRANSFORM, FAULT DIAGNOSIS, GEAR
 
References: 
  • ندارد
 
  pdf-File tarjomyar Yearly Visit 83
 
Latest on Blog
Enter SID Blog