Click for new scientific resources and news about Corona[COVID-19]

Paper Information

Journal:   IRANIAN INTERNATIONAL JOURNAL OF SCIENCE   Fall 2000 , Volume 1 , Number 2; Page(s) 131 To 138.
 
Paper: 

CONSTRUCTION OF SOME JOIN SPACES FROM BOOLEAN ALGEBRAS

 
 
Author(s):  ASHRAFI A.R.*
 
* University of Kashan, Kashan, Iran
 
Abstract: 
The aim of this paper is to construct an algebraic hyperstructure over a set G corresponding to a Boolean algebra B and a function S:GB. In order to accomplish this goal we will need to define a hyperoperation on the set G. We define, ab =a^6 b={gEG/s(g)<=s(a)vs(b)} and prove that if the image of G is a v -semilattice or constitute a partition of 1 in B, then (G, ^6) is a hypergroup.
 
Keyword(s): HYPERGROUP, BOOLEAN ALGEBRA
 
 
References: 
  • Not Registered.
  •  
  •  
 
Citations: 
  • Not Registered.
 
+ Click to Cite.
APA: Copy

ASHRAFI, A. (2000). CONSTRUCTION OF SOME JOIN SPACES FROM BOOLEAN ALGEBRAS. IRANIAN INTERNATIONAL JOURNAL OF SCIENCE, 1(2), 131-138. https://www.sid.ir/en/journal/ViewPaper.aspx?id=13886



Vancouver: Copy

ASHRAFI A.R.. CONSTRUCTION OF SOME JOIN SPACES FROM BOOLEAN ALGEBRAS. IRANIAN INTERNATIONAL JOURNAL OF SCIENCE. 2000 [cited 2021June15];1(2):131-138. Available from: https://www.sid.ir/en/journal/ViewPaper.aspx?id=13886



IEEE: Copy

ASHRAFI, A., 2000. CONSTRUCTION OF SOME JOIN SPACES FROM BOOLEAN ALGEBRAS. IRANIAN INTERNATIONAL JOURNAL OF SCIENCE, [online] 1(2), pp.131-138. Available: https://www.sid.ir/en/journal/ViewPaper.aspx?id=13886.



 
 
Yearly Visit 34
 
 
Latest on Blog
Enter SID Blog