Review Article

Microbial cell surface display; its medical and environmental applications

Vida Tafakori#1, Ibrahim Torktaz#2, Mohsen Doostmohammadi2, Gholamreza Ahmadian*1

1Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14965/161, Tehran, I.R. Iran 2Department of Biotechnology, Faculty of Advanced Science and Technologies, University of Isfahan, 81746-73441, Isfahan, I.R. Iran

Received: 28 January 2012
Accepted: 29 April 2012

INTRODUCTION

Genetic engineering was established in the 1970s. since then different methods for engineering microorganisms with special abilities have been developed. One of these methods is a technology called molecular display (Arming) technology or cell surface engineer-

ing. This technology allows displaying proteins or peptides on living cells such as yeast, mammalian and bacterial cells (Shibasaki et al., 2009). This technology enables us to produce modified cells with desired surface properties. The first technology, phage display, was set up in the 1980s (Smith, 1985). Bacterial cell surface display was then established in the 1986s (Charbit et al., 1986). Because of its advantages such as easy proliferation, large cell size and independent life style of bacteria, bacterial cell surface display progressed rapidly. However, the expression of heterologous eukaryotic proteins was sometimes difficult by this system. some of these proteins need post-translational modifications such as glycosylation, phosphorylation and so on. In these cases, yeast cells are good candidates.

Surface display of heterologous proteins on the cell surface of microorganisms is useful for developing different whole-cell factories with different applications including separation of produced polypeptides; production of whole cell biocatalysts, whole-cell adsorbents, live vaccines and screening of modified or novel proteins. Utilization of the surface of living cells is attractive in different microbiology and molecular biology applications (Ueda and Tanaka, 2000 a, b).

In this review, we focus on the principles and some applications of molecular display technology in yeast.
and bacteria in medical and environmental fields.

Principle of cell surface engineering in bacteria and yeast

The cell surface is a functional part of the cell and can mediate many important cell functions. Cell surface proteins may extend across the plasma membrane and other may non-covalently or covalently interact with cell-surface components. In biotechnology, cell surface components can be used as carrier proteins to display heterologous proteins (passenger proteins) on the cell surface. The passenger protein can be fused to carrier protein C-terminally or N-terminally. The N-terminal fusion is used when the carrier protein has an anchoring domain in its C-terminus part. The C-terminal fusion is used when anchoring domain is in N-terminal of carrier proteins. So various gene fusion strategies have been considered in bacteria: C-terminal fusion, N-terminal fusion and sandwich fusion (Fig. 1).

In Gram-negative bacteria, cell membrane consists of cytoplasmic membrane, periplasmic space and outer membrane. Anchoring proteins in Gram-negative bacteria should pass through these layers to the surface of the cell. The Lpp′-OmpA hybrid is a good example of C-terminal fusion type. This system was first developed by Georgiou et al., (1996). The anchoring part of this system include the signal sequence and nine N-terminal residues of the mature *E. coli* lipoprotein, Lpp′, fused to the residues 46-159 of the *E. coli* outer membrane protein A (OmpA). The passenger proteins will then be cloned, expressed and exposed to the environmental side of the cell as a C-terminal fusion to this anchor (Georgiou et al., 1996).

Tafakori et al. (2012) used a modification of this system by fusing Lpp′–OmpA chimera to cyanobacterial metallothionein and chitin binding domain of chitinas S from *Bacillus pumilus* SG2 (Ahmadian et al., 2007) for metal adsorption and cell immobilization. They showed that this system function efficiently as a bioadsorbent. Peptidoglycan-associated lipoprotein (PAL) is an example of N-terminal carrier protein. PAL binds to the peptidoglycan layer and outer membrane with its C-terminal portion and N-terminal, respectively (Dhillon et al., 1999).

The most commonly strategy used for the surface display of proteins in Gram-negative bacteria is sandwich fusion. Outer membrane proteins (OMPs) are common carriers in this system. These β-barrel structures consist of antiparallel β-strand pairs and two types of loops: external less conserved loops and periplasmic conserved loops. The external loops can be used as a carrier for sandwich strategy (Lee et al.,

Figure 1. Various gene fusion strategies in bacteria. A: N-terminal fusion. B: C-terminal fusion. C: Sandwich fusion.
OmpC is a putative example of this strategy. Xu and Lee, (1999) successfully inserted a poly-histidine peptides containing 162 amino acids, into the seventh external loop of OmpC.

In Gram-positive bacteria, cell envelope composed of one biological membrane and a cell wall structure containing peptidoglycan and covalently linked teichoic acids. Different surface proteins, which are part of the cell envelope, have been used for surface display of proteins in gram positive bacteria. The main types of these are: (i) transmembrane proteins, (ii) lipoproteins, (iii) LPXTG-like proteins, (iv) cell wall-binding proteins and (iv) Macromolecular protein surface structures (Desvaux et al., 2006). These carrier proteins are fused to passenger proteins by N-terminal fusion or C-terminal fusion.

In general transmembrane spanning domain of any membrane protein may be used as an anchoring domain in surface display of proteins. The target protein is then linked at its N-terminus to one or more transmembrane spanning domain of a cytoplasmic membrane protein.

Lipoproteins are attached to the peptidoglycan and serve important function in adhesins, transporters, receptors, enzymes or virulence factors (Sutcliffe and Russell, 1995). Stover et al. (1993) fused the outer surface protein A (OspA) of Borrelia burgdorferi to the relevant N-terminal part of the Mycobacterium tuberculosis lipoprotein Mtbl9 in Mycobacterium bovis strain bacille Calmette-Guerin (BCG). The OspA surface exposed and the recombinant BCG strain was evaluated in vaccination studies.

Sortase is a transpeptidase that conjugate some surface proteins with LPXTG motif at their c-terminal on the external side of cell wall of some gram positive bacteria. Fasehee et al. (2011) were able to display chitinase (chiS) of B. pumilus SG2 chitinase on the surface of B. subtilis using a putative sortase, yhcS. They also showed for the first time that this sortase of B. subtilis is functional (Fasehee et al., 2011; Ahmadian et al., 2007). The displayed chitinase by the above methods was functional as shown by enzyme assay.

Tsuchiya et al. (1999) by fusing cell wall binding (CWBD) domain of the major B. subtilis autolysin to B. subtilis extracellular lipase B, showed that the enzyme binds efficiently but in small amount, to the B. subtilis cell wall. They mentioned that, the low level of surface expression is due to the presence of extracellular proteases. To solve this problem and increase the amount of surface displayed lipase, they used strains of B. subtilis deficient in some cell-wall binding and extracellular proteases (Kobayashi et al., 2000).

Extracellular structures such as pilus, S-Layer, cellulosome and flagellum consist of subunits that can be used as a carrier protein. For example pilus has occasionally been used as an anchoring motif to express foreign peptides on the surface of bacteria by inserting the peptides into its permissive sites. Saffar et al. (2005) developed a bioadsorbent by expressing a short cysteine rich peptide on the surface of enterotoxigenic E. coli. They used CS3 fimbriae as a carrier and showed that the ability of the bacteria to adsorb Ni\(^{2+}\) and Cd\(^{2+}\) ions was increased five-fold and three-fold compared to the wild type E. coli, respectively.

Another living system that can be used for protein surface display, is the bacterial spore and because spores are resistant to environmental stresses, they are a unique opportunity for surface display (Medaglini et
In the case of some spore-forming bacteria, ex; *B. subtilis*, both forms including vegetative and spore forms of the bacterial cell, were used for developing various surface display systems. Tavassoli et al. (2012) used spore surface display (CotC) for expression of β-galactosidase (*lacA*) gene from *B. subtilis* strain 168 on the surface of *B. subtilis* strain RH101 (ΔcotC) spores (Fig. 2). The expression of the lacA on the spore surface was shown by western blotting, immunofluorescence. β-galactosidase assay was also performed to show that fusion enzyme exposed on the spore surface is functional. They concluded that the immobilized enzyme can be efficiently used as whole cell biocatalyst.

Kwon et al. (2007) expressed β-galactosidase on *B. subtilis* spores by fusion it to the spore CotG protein to make a whole-cell biocatalyst. They suggested that this system is very efficient in water-solvent biphasic reaction systems and the hydrophobicity of the spore surface should have facilitated localization at the interface between the two phases. Therefore, his system not only stabilizes the enzyme but also increases availability of β-Gal at the interface.

When it was first introduced in 1997, the engineered yeast cell displaying proteins on its surface was named “arming yeast” (Shibasaki et al., 2009). Agglutinins and Flo1 are the main components that are generally used for displaying proteins on the yeasts cell surface. Agglutinin proteins, a-agglutinin and α-agglutinin, are expressed on the surface of *S. cerevisiae* and involved in mating of the a- and α-cells, respectively. The AGα 1 gene encodes α-agglutinin and this protein interacts with the binding subunit of a-agglutinin of α-type cells. AGA1 and AGA2 are core and binding subunits of a-agglutinin, respectively. These subunits are linked together through disulfide bridges (Zou et al., 2000). α-agglutinin and the core subunit of α-agglutinin consist of four parts: A secretion signal, an active region, a serine-threonine rich support region and GPI anchor attachment signal (Kondo and Ueda, 2004). For surface display of proteins, they are combined with the GPI-anchor attachment signal at C-terminal end of α-agglutinin (Fig. 3A). For anchoring protein using a-agglutinin system, the binding subunit of the protein Aga2p binds to heterologous protein by its C-terminus and to Aga1p by its N-terminus (Fig. 3B). As the Aga2p fusion protein and Aga1p associate within the secretory pathway, this construct exports to cell surface and links to the cell wall.

Flo1 protein encoded by *flo1* gene and is a serine-threonine-rich-lectin-like cell-wall protein of *S. cerevisiae*. This protein is composed of four main domains including flocculation domain, secretion signal, glycosyl phosphatidylinositol (GPI) anchor attachment sig-
nal, and membrane-anchoring domain (Kondo and Ueda, 2004). Truncation of Flo1 polypeptide indicated that the hydrophobic C-terminal domain of this protein, contains a GPI-attachment signal, is necessary for anchoring of Flo1p in the yeast cell wall (Bony et al., 1997). GPI-anchoring domain of Flo1p is used as a common surface display system in yeast (Fig. 3C). Meanwhile, the adhesive ability of the flocculation domain of Flo1p is used for surface display of proteins in yeast display system (Matsumoto et al., 2002) (Fig. 3 D).

Environmental application of surface display

There are two kinds of pollutants: organic and inorganic materials. Organic pollutants contain insecticide, pesticides, volatile organic compounds, oils, poly aromatics hydrocarbons, dyes, etc. Inorganic pollutants include fertilizers and metals. These can cause serious damages to human health and other organisms. Organic contaminations can be degraded by enzymatic activity and inorganic contaminations can be removed by uptake or adsorption strategy.

Enzymatic degradation of organic contaminants can be performed by the cells containing degradative enzymes, either free or immobilized on their surface. The advantages of immobilized over soluble enzymes arise from their enhanced stability and ease of separation from the reaction media, leading to significant savings in enzyme consumption (Tischer and Kasche, 1999). Different conventional methods used to immobilize enzymes, involve covalent, non covalent or inclusion interaction of free enzymes together or with a carrier (Tischer and Kasche, 1999). However all of them need enzymes purification step which leads to cost increasing. Expression of recombinant enzymes on the surface of live bacteria, bacterial spore and yeast, solve this problem. This is used to make a whole cell and recyclable biocatalyst (Rutherford and Mourez, 2006). So far many diverse enzymes are displayed on the bacterial cell surface. These include β-galactosidase (Xu et al., 2011; Kwon et al., 2007) chitinase (Wu et al., 2006), amylase (Narita et al., 2006), lipase (Jung et al., 2006), etc. A thermostable α-amylase from Bacillus licheniformis was immobilized on the surface of Bacillus subtilis spore as carrier using covalent attachment by non-genetically method. Catalytic properties and stability of the immobilized α-amylase were improved when compared with that of free enzyme. The optimum pH and temperature was determined and shown to be different for free and immobilized enzyme (Gashtasbi et al., 2012). The results showed potential of immobilized amylase, for starch degradation.

Different researchers displayed diverse enzymes on S. cerevisiae cells. Murai et al. (1997) anchored Rhizopus oryzae glucoamylase, on yeast cells by C-terminal half of α-agglutinin and show this yeast cells utilized starch directly as the sole carbon source. Matsumoto et al. (2002) used flo1p system, for surface display of lipase from Rhizopus oryzae on S. cerevisiae. Displayed lipase successfully catalyzed the methanolysis reaction.

Conventional physicochemical methods for removing/recovery of metal ions from contaminated waters such as industrial wastewater are often ineffective and costly when applied to dilute effluents (Kuroda and Ueda, 2006). Microorganisms use two ways to recover metal ions from environment. One way is adsorption of metals to the surface components and another one is gradual accumulation of metals to the cells. Surface adsorption of metals has several advantages: desorption of Metal ions without cell disruption with mild chemical treatment, so reusing of biosorbents for the further metal adsorption cycle, elimination of the metal crossing the membrane barrier, thus removing the rate-limiting step and increasing the overall kinetics (Wu et al., 2004), using of dead cells because of independence of metabolism. This facilitates tolerance to higher toxic metal concentrations without damaging to cells (Vijayaraghavan and Yun, 2008).

There have been many researches on microbial surface display of metal binding domains for biosorption of heavy metals. In a study by Tafakori et al. (2012) a variation of the previous strategies was used to devise a novel biosorbent. A combination of two different cyanobacterial metallothioneins, SmtA or MtnA, and chitin binding domain were used in this research to develop a whole cell biosorbent. The authors successfully demonstrated the functionality of the fusion proteins in E. coli (Tafakori et al., 2012). Xu et al. (2002) previously by expressing a bifunctional fusion proteins consisting of synthetic phytochelatin (EC20) linked to a Clostridium-derived cellulose-binding domain (CBDclos), showed that The immobilized sorbents is highly effective in removing cadmium at parts per million levels and enabling immobilization onto different cellulose materials in essentially a single step (Xu et al., 2002). Some researchers have used histidine tag as a model to develop various surface display modules. Hinc et al. (2010) engineered B. subtilis spores to express eighteen histidine residues as fused to promot-
er and N-terminal part of cotB. By analyzing the wild type and recombinant spores, the researcher showed that the recombinant spore efficiently adsorbed nickel ions, and the recombinant spore proved to be significantly more efficient than wild type spores in metal-binding. The effect of biomass, pH and temperature was evaluated in this study. They suggested that the recombinant spore displaying metal binding domains can be used as a new and potentially powerful tool for the treatment of contaminated ecosystems (Hinc et al., 2010).

To construct bioadsorbents for the removal of toxic metal ions and recovery of rare-metal ions, various metal-binding proteins/ peptides such as hexa-histidine, metallothionein and the transcription factor ModE (with C-terminal molybdate-binding domain) with ability to bind toxic divalent heavy metal ions or rare metals, were successfully displayed on the cell surface of yeast by α-agglutinin-based system. These bioadsorbents show enhanced adsorption of heavy metal ions such as copper, nickel, cadmium and molybdenum ions (Nishitani et al., 2010; Kuroda and Ueda, 2003; Kuroda et al., 2001).

Separation of the bioadsorbents after metal removing/recovery is very important. Cell aggregation results spontaneous separation of cells from the treated water, decreasing in costs and improved simplicity of the procedure. Two kinds of modifications were carried out to increase the usefulness of the cell surface-engineered yeasts in bioadsorption. As the first improvement, the self-aggregation ability in response to environmental copper ions was endorsed by introducing the fusion gene consisting of a copper inducible CUP1 promoter and GTS1, the induced expression of which causes cell aggregation (Kuroda et al., 2002). As the second improvement, tandem repeating of yeast metallothionein (YMT) displayed on yeast, to enhance adsorption ability (Kuroda and Ueda, 2006).

The creation of proteins/peptides with specific adsorption ability could hold the promise of the construction of novel bioadsorbents with specific adsorption ability for the recovery of rare metals as well as toxic metal ions in the future.

Medical application of surface display

Surface display has different application in medical area such as vaccine development, epitope mapping, antibody display, and etc. Live attenuated organisms; killed but intact organisms and subcellular components are three most important types of vaccines (Kaufmann, 2001). Delivery of live subunit vaccines has been looked upon as an attractive alternative to the more traditional methods because of ease of production. It is shown that they sometimes elicit long-lasting immunity after only a single immunization (Samuelson et al., 2002). To generate live vaccines, two different types of organisms have been used. One group is normally pathogenic organisms that have been subjected to attenuation. Examples of this group are *Salmonella* spp and *M. bovis* strain BCG. Another group is non-pathogenic commensal or food-grade organisms, such as *S. gordinii*, several staphylococcal, lactic acid bacteria, *B. subtilis* bacteria and its spores, and *S. cerevisiae*. Ahmadian and colleagues (2012) used an engineered *E. coli* as a vaccine model against Foot-and-mouth disease. They fused several different Foot and Mouth Disease Virus (FMDV) epitopes containing the immunogenic regions of VP1 to the *E. coli* ompA. The immunogenicity of these recombinant bacteria was tested by immunizing the mice. The results showed extra stimulation in the immune system of the mice with daily feed of these recombinant bacteria.

Searching in the literature showed that different antigens are expressed on the *B. subtilis* spore surface by using different spore coat proteins as a carrier. Istitico et al. (2001) expressed the C-terminal fragment of the tetanus toxin (TTFC) on the *B. subtilis* spore surface as a fusion to promoter and part of cotB. They suggested that this system can be used for vaccine delivery. Hinc et al. (2010) expressed urease subunit (UreA) of animal pathogen Helicobacter acinomchis on the *B. subtilis* spore surface using three different spore coat as carriers. The surface expression was confirmed by different means including western blot, dot blot and immunofluorescence microscopy analysis. This subunit is recognized as a major antigen of *H. Pylori* and induces protection against infection. Therefore, this study aimed at developing an efficient oral vaccine not as a whole cell biocatalyst (Hinc et al., 2010).

There are many studies that used yeasts for antigen presentation. Mischo et al. (2003) demonstrated the capacity of yeasts to present tumor-associated antigens in their naturally folded state (Mischo et al., 2003). They expressed colorectal cancer antigen A33 on the yeasts surface, and then for testing the applicability of the yeast system for the detection of specific antibody responses, they expressed the full length NY-ESO-1 protein on the yeast surface. In another study in 2006, Zhu et al., displayed the HL1 gene encoding haemolysin from *Vibrio harveyi* SF-1in yeast cell sur-
face, and their results demonstrated the haemolytic activity on erythrocytes from flounder (Zhu et al., 2006).

Bowley et al. (2007) showed that yeasts are more superior to phages in expression of HIV-1 immune sc-FV cDNA library. However, the major obstacle of yeast surface display for expression of allergens is glycosylation of targets by the high-mannose oligosaccharides, which may bind to IgE (Bowley et al., 2007). Different organisms displaying random peptide libraries on their surface were utilized for epitope mapping. This method is very easy compared to traditional synthetic methods. Lang and collaborates (2000) cloned various PapG fragments into OmpS in order to characterize the adhesive epitopes responsible for binding to globoside (Lang et al., 2000).

The expression of functional antibodies on the surface of bacteria such as E. coli and staphylococci has applications such as: (i) creation of whole-cell diagnostic tools for the selection of peptides or recombinant antibody fragments from large libraries; (ii) generation of devices for immunopurification; (iii) whole-cell affinity sorbents; and (iv) targeting cells to specific immune reactive sites or increase their ability to colonize certain tissues (Samuelson et al., 2002). In general, the characteristics of surface-engineered cell are depended on the type of the displayed protein/peptide. Therefore new potential can be produced by using different kinds of proteins/peptides.

CONCLUSIONS

In this review, we described the principle of microbial surface display technology with the emphasis on yeast, bacteria and some of their applications in environment and medicine. This technology allows displaying of different size of protein molecules, from small to large and from single-subunit proteins to hetero-oligomeric multi-subunits. In addition, several different proteins can be displayed simultaneously. Flo1, Cwps and α-agglutinin are main three ways for yeast surface display. Also different anchoring proteins in Gram-positive and Gram-negative bacteria can be used for displaying heterologous proteins on the surface of bacterial cells.

The range of applications of surface display technology is dependent on the displayed proteins on the surface of microorganisms and covers from medical to environmental applications. The engineered cells are expected to find increasingly wider use as expression systems are gradually improved and technical hurdles are overcome.

Acknowledgements

Our research that was mentioned in this review was supported by the National Institute of Genetics Engineering and Biotechnology, Iran.

References

