Protective Effect of Safranal against Hexachlorobutadiene-Induced Nephrotoxicity in Rat

M.T. Boroushaki, H. Mofidpour¹, H.R. Sadeghnia

Abstract
Background: Hexachlorobutadiene (HCBD) is a potent nephrotoxin in rodents, which can cause degeneration, necrosis and regeneration in renal tubular epithelial cells. It has been shown that safranal, the active ingredient of saffron, has a protective effect against ischemic injuries. The aim of this study was to examine the protective effect of safranal against HCBD-induced nephrotoxicity in rats.

Method: Thirty Wistar albino rats were randomly divided in five groups. The rats received a single dose of corn oil 1ml/kg (group 1), HCBD 50mg/kg (group 2), or safranal at doses of 0.5, 0.25 and 0.1 ml/kg one hour before HCBD (50mg/kg) injection (groups 3-5). All injections were carried out intraperitoneally. Urine samples were collected one day before, and one day after injections. On day 3 the animals were sacrificed and both kidneys were removed. The right kidney was fixed in formalin for histological examination and the left kidney was homogenized for measuring malondialdehyde (MDA). Blood samples were taken by cardiac puncture and used for the measurement of urea, creatinine, glucose and protein concentrations.

Results: Blood urea concentration in HCBD treated group was significantly higher compared with group 3 (p<0.01) and groups 1 and 4 (p<0.001). There was no significant difference in urea concentrations between group 5 and HCBD treated group. Urinary concentration of glucose was significantly higher in group 2, compared with groups 1, 3 and 4 (p<0.001) No significant differences were observed in urinary glucose concentrations between HCBD- and safranal (0.1ml/kg)-treated groups. Concentration of protein was also significantly higher in group 5 than those of other tested groups (p<0.001).

Conclusion: Safranal at doses of 0.25 and 0.5ml/kg has a protective effect against HCBD-induced nephrotoxicity in rats.

Keywords: Hexachlorobutadiene ⊙ safranal ⊙ malondialdehyde ⊙ nephrotoxicity

Introduction

Hexachlorobutadiene (HCBD) is a potent nephrotoxin in rodents,¹ which can cause degeneration, necrosis, and regeneration in renal tubular epithelial cells.²⁻⁴
Safranal and hexachlorobutadiene-induced nephrotoxicity

Its toxicity is due to its conjugation by glutathione (GSH) to form glutathione s-conjugate, and finally to the related cysteine-conjugate. This metabolite is actively taken up by kidneys and is cleared in the renal tubular epithelial cells to a reactive thiol derivative by the enzyme β-lyase. The reactive thiol derivative covalently binds to macromolecules, and causes proximal tubular necrosis in corticomedullary junction.

Crocus sativus L. (Iridaceae), commonly known as saffron, is used in folk medicine for various purposes such as an aphrodisiac, antispasmodic, expectorant and antiedematogenic remedy. Modern pharmacological studies have demonstrated that saffron extracts have antitumour, radical scavenger, hypolipaemic, and anticonvulsant effects, and also improve learning and memory. Chemical studies have shown the presence of constituents such as crocin, crocetin, safranal and picrocrocin in C. sativus extracts. Among these constituents, crocetin is mainly responsible for the mentioned pharmacological activities of saffron.

There are several studies indicating that saffron has antioxidant activity. A study has demonstrated that the aqueous extract of saffron could inhibit cisplatin-cyclophosphamide-, mitomycin-C- and urethane-induced alterations in lipid peroxidation in murine. Furthermore, our laboratory findings showed that safranal is able to protect kidney against ischemia / reperfusion injury in rat. Therefore, this study was undertaken to investigate the possible protective effect of safranal on HCBD-induced nephrotoxicity.

Materials and Methods

Thirty Wistar albino rats (150-200g) of either sex (Animal Breeding Unit, Department of pharmacology, Ghaem hospital, Mashhad, Iran) were housed in a controlled environment of 50% humidity, 20°C temperature and 12 hours light period. After acclimatization, rats were divided randomly into 5 groups; 6 rats in each group. A 24-hour urine sample was collected from each rat using a metabolic cage.

<table>
<thead>
<tr>
<th>Animal groups</th>
<th>Urea (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
<th>Glucose (mg/dl)</th>
<th>Protein (mg/dl)</th>
<th>MDA (nmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 (n=6)</td>
<td>59±3.8***</td>
<td>0.63±0.03ns</td>
<td>7±0.7***</td>
<td>1.68±0.95***</td>
<td>12±1.9 ns</td>
</tr>
<tr>
<td>Group 2 (n=6)</td>
<td>115.75±0.4</td>
<td>1±0.19</td>
<td>38.25±0.63</td>
<td>9.85±0.76</td>
<td>16.4±3.32</td>
</tr>
<tr>
<td>Group 3 (n=6)</td>
<td>76.5±6.5**</td>
<td>1.07±0.14 ns</td>
<td>21.24±1.18***</td>
<td>1.3±0.28***</td>
<td>9.45±0.38 ns</td>
</tr>
<tr>
<td>Group 4 (n=6)</td>
<td>68.25±2.78***</td>
<td>0.68±0.28 ns</td>
<td>24.25±1.11***</td>
<td>1.75±0.43***</td>
<td>13.66±1.6 ns</td>
</tr>
<tr>
<td>Group 5 (n=6)</td>
<td>122.75±8.7 ns</td>
<td>1.15±0.11 ns</td>
<td>39.25±1.25ns</td>
<td>3.35±0.87***</td>
<td>13.74±0.7 ns</td>
</tr>
</tbody>
</table>

* p<0.01 compare to group 2, *** p<0.001 compare to group 2 ns: Non-significant, data shown as mean ± SEM

Then, rats received intraperitoneally a single dose of corn oil 1ml/kg (group 1); HCBD (Fluka chemie, Switzerland) 50mg/kg (group2); and groups 3,4,5 received safranal (Fluka chemie, Switzerland) 0.5, 0.25 and 0.1mg/kg respectively to be followed by HCBD (Fluka chemie, Switzerland) 50mg/kg one hour later.

Twenty four hours after injections, urine samples were collected. Urinary glucose and protein concentrations were determined by enzymatic (glucose oxidase and turbidometry methods, respectively (Thiobarbituric acid: Merck, Dramstadt, Germany). The Animals were then sacrificed under ether anesthesia. Blood samples were taken by cardiac puncture for measuring urea and creatinine concentrations as indicators of renal function, using urease and Jaffé methods, respectively. Both kidneys were removed. The left kidney was homogenized for measuring MDA by thiobarbituric acid assay. The right kidney was fixed in formalin. Then histological studies were performed in prepared sections stained in haematoxylin and eosin (H&E).

Statistical Analysis

Data were expressed as mean ± SEM. The differences among different treated groups were analyzed by one-way ANOVA followed by Tukey test. P<0.05 was considered statistically significant.

Results

Serum concentrations of urea, creatinine, glucose, protein and MDA are shown in table 1. Blood urea concentration in HCBD treated group was significantly higher compared with group 3 (p<0.01) and groups 1 and 4 (p<0.001) (table 1). There was no significant difference in urea concentrations between group 5 and HCB treated group. There were no significant differences in creatinine and MDA concentrations between HCBD treated and other experimental groups (table 1). Urinary concentration of glucose was significantly higher in group 2, compared with groups 1, 3 and 4 (p<0.001) (table 1).
No significant differences were observed in urinary glucose concentrations between HCBD- and safranal (0.1ml/kg)-treated groups. Concentration of protein was also significantly higher in group 5 than those of other tested groups (p<0.001) (table 1).

Light microscopic examination of kidneys' sections showed a normal appearance for glomerulus, Bowman's capsule, proximal, distal and collecting tubules in corn oil treated group (control group). However an extensive damage was observed in straight portion of proximal tubules in groups 2 and 5 (figure 1). Other parts of kidney such as cortex and medulla were normal in groups 2 and 5. On the other hand all anatomical structures of kidney including renal tubules, had normal appearance in groups 3 and 4 (figure 2).

Discussion

The findings indicated that safranal at doses of 0.25 and 0.5ml/kg is able to protect kidneys against HCBD-induced nephrotoxicity in rats. Concentrations of blood urea and creatinine and urinary concentrations of glucose and protein were used as indicators of damage to kidneys. Creatinine concentration was the only parameter that showed no significant difference in all treated groups, compared with control group. However, it should be mentioned that the level of creatinine was higher in group 3 than that of group 2. This may be due to problems in measurement method. The level of urea, glucose and protein showed a rational consequence.

It has been shown that the aqueous extract of saffron inhibited oxidative stress induced by cisplatin, cyclophosphamide, mitomycin-C. Saffron also elevates the intracellular reduced glutathione and related enzymes, i.e. glutathione reductase and glutathione-S-transferase. In our study the lack of significant difference in MDA concentrations, an indicator of lipid peroxidation, suggests that HCBD-induced renal necrosis may not be due to oxidative stress. In other words the protective effect of safranal may not be related to its antioxidant activity.

HCBD enters the renal proximal tubular cells via organic anion transporter (OAT) system. Therefore, inhibition of the OAT system may contribute to the protective effect of safranal. In addition, safranal may alter the metabolism of HCBD by affecting the glutathione-
S-transferase and/or cysteine conjugate β-lyase activity to prevent toxic thiol formation. However, the exact mechanisms by which safranal protects HCBD-induced renal toxicity remains unknown. Further studies are needed to address this question.

The results of light microscopic examination of kidneys are in agreement with the biochemical findings. As shown in figures 1 and 2, there is substantial necrosis in renal proximal tubules in groups 2 and 5, while no abnormalities are apparent in groups 3 and 4.

In conclusion, safranal at the doses 0.25 and 0.5 mg/kg protects kidneys against toxic effects of HCBD in rats.

Acknowledgement
This work was financially supported by the Vice-Chancellor for Research of Mashhad University of Medical Sciences.

References