Simultaneous Radiologic Isolated Syndrome and Glioblastoma Multiforme in an Adult Patient

Anahita Zoghi1, Guive Sharifii1, Mahtab Ramezani1, Navid Rahimi2, Shahram Sabeti1

1 Loghman Hakim hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
2 Rheumatology Department, Hazrat Rasool Hospital, Iran University of Medical Science, Tehran, Iran

ABSTRACT

A young known case of multiple sclerosis was evaluated with chief complaint of gradually progressed left lower limb weakness over 3 weeks. Pathologic examination of a mass in brain magnetic resonance imaging confirmed the diagnosis of glioblastoma multiforme (GBM). Given the importance of the definite diagnosis of malignant glioma and its effect on patient’s management, GBM should be considered as a differential diagnosis in cases with coexisting mass like lesion and demyelinating plaques.

Keywords: Radiologic Isolated Syndrome; Glioblastoma Multiforme; Tumefactive Multiple Sclerosis

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory disease of central nervous system, which is characterized by myelin damage in the brain and spinal cord. Although it is uncommon, the concurrence of space occupying lesions along with multiple sclerosis plaques has been reported. It is important to differentiate tumefactive MS from other space occupying lesions, such as neoplasms because management and prognosis are different. In comparison with high grade malignancies, there are more reports about the coexistence of MS and low grade tumors. We reviewed a case with a rare coexistence of MS and glioblastoma multiforme (GBM).

CASE PRESENTATION

A young patient, admitted in our department with chief complaint of left lower limb weakness which gradually progressed over 3 weeks. The patient had no prior history of neurological problems. Systemic physical examinations were completely normal. Abnormal findings in neurological examination were decreased muscle power of the left lower limb, left Babinski sign and impaired Luria test (a test for evaluating frontal lobe).

Laboratory test including vasculitis marker, Venereal Disease Research Laboratory, serum angiotensin-converting enzyme and human immunodeficiency virus antibody were negative. Axial brain CT scan revealed a hypodense mass lesion in the right frontal lobe with surrounding edema. In brain magnetic resonance imaging (MRI) the lesion was hyper signal in T2 (Figure 1) and FLAIR sequence, hypo signal in T1 and showed incomplete ring enhancement in post contrast images. It was iso to hypointense in diffusion weighted (DWI) imaging (Figure 2) and showed no restricted diffusion in apparent diffusion coefficient (ADC) map. Also multiple oval shape plaques were found in periventricular and pericallosal regions, one of them had Dawson’s finger characteristic. These lesions were hyper signal in T2 and FLAIR, isointense in T1 and were hypointense in both DWI and ADC map. Cervical MRI and visual evoked potential requested and the results were normal.

MRS (magnetic resonance spectroscopy) revealed reduction in N-acetylaspartate (NAA) peak with increase in choline, lipid and choline/Cr ratio (Supplemental Figure 3). Considering the findings of MRI and MRS of right frontal lesion, two most possible differential
diagnosis were tumefactive MS and low grade glioma. Because of this important diagnostic dilemma the patient referred for histological assessment. Finally pathology of the lesion revealed GBM (Figure 4). Paraffin sections of the neoplasm showed Foci of necrosis surrounded by glial cells with palisading pattern were evident. Hypercellularity and increased mitotic activity were other notable findings. The final histopathologic diagnosis was Glioblastoma Multiforme). Periventricular lesions had typical characteristic of demyelination disease. Indeed, our patient had radiologically isolated syndrome with simultaneous GBM 3.

DISCUSSION

MS is an important prevalent neurological disease 4. Characteristic imaging findings of MS include multiple supratentorial and infratentorial white matter lesions, usually in the periventricular white matter with a slightly surrounding edema and mass effect proportional to the lesion size 5. Demyelination plaques are hypersignal in T2 and FLAIR. In acute early phase they show reduced diffusion on ADC map which converts to increase ADC map in later stage due to peripheral vasogenic edema 6. Tumefactive MS is classically present with mass like lesion, with contrast enhancement 7 and may mimic brain tumor or abscess 8. Some MRI characteristics may help in distinguishing tumefactive MS from brain tumors or abscess. These findings are open ring enhancement, peripheral restriction on DWI and venular enhancement 9.

Figure 1. Sagittal T2 MRI image showing a cortical hyperintense lesion in frontal lobe with surrounding edema along with a hyperintense lesion emanating radially from the body of the corpus callosum (Dawson’s finger).

Figure 2. Axial diffusion-weighted MRI showing no restricted diffusion in ADC map.

Figure 3. MRS of lesion revealed reduction in NAA peak with increase in choline, lipid and choline/Cr ratio.
Significant differences in the N-AA/Creatine ratio in central regions, Is a finding that may help to differentiate Tumefactive demyelinating lesions and high-grade gliomas on MRS. Elevation of the glutamate/glutamine peaks is another MRS useful findings which can help to differentiate these two entity.

Finally in equivocal cases histologic examination will solve the diagnostic dilemma. There are case reports of concurrent MS and brain tumors. Brain tumors are diagnosed more frequently in patients with MS than general population. This increase may be explained by frequent neuroimaging of the central nervous system in patients with MS that reveals symptomatic or asymptomatic brain tumors.

CONCLUSION

Although it is not a common presentation, in any case of demyelinating plaque that mimics a brain tumor, even with documented diagnosis of previous MS, the possibility of a concurrence of MS and brain tumor should be strongly considered.

As far as we know there are limited reports of coexisting clinically silent MS and GBM in literature. Given the importance of the definitive diagnosis of malignant glioma and its effect on patient’s management, GBM should be considered as a differential diagnosis in cases with coexisting mass like lesion and demyelinating plaques.

ACKNOWLEDGEMENT

This study is supported by clinical research development center of Loghman Hakim hospital, Shahid Beheshti University of Medical Science, Tehran, Iran.

REFERENCE