Association of PNPLA3 I148M Variant With Chronic Viral Hepatitis, Autoimmune Liver Diseases and Outcomes of Liver Transplantation

Ning Geng 1; Yong-Ning Xin 2,*; Harry Hua-Xiang Xia 3; Man Jiang 2; Jian Wang 1; Yang Liu 1; Li-Zhen Chen 1; Shi-Ying Xuan 2,*

1Qingdao Municipal Hospital, Medical College, Qingdao University, Qingdao, P. R. China
2Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, P. R. China
3Qingdao Municipal Hospital, Qingdao University, Qingdao, P. R. China

*Corresponding Authors: Yong-Ning Xin, Department of Gastroenterology, Qingdao Municipal Hospital, P. O. Box: 266021, Qingdao, P. R. China. E-mail: xinyongning@gmail.com; Shi-Ying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, P. O. Box: 266021, Qingdao, P. R. China. Tel: +86-53288890550, Fax: +86-53282025522, E-mail: cxyxyn@gmail.com

Received: December 29, 2014; Revised: February 15, 2015; Accepted: March 1, 2015

Context: The PNPLA3 I148M variant has been recognized as a genetic determinant of liver fat content and a genetic risk factor of liver damage progression associated with steatohepatitis. The I148M variant is associated with many chronic liver diseases. However, its potential association with inflammatory and autoimmune liver diseases has not been established.

Evidence Acquisition: We systematically reviewed the potential associations of I148M variant with chronic viral hepatitis, autoimmune liver diseases and the outcome of liver transplantation, explored the underlying molecular mechanisms and tried to translate them into more individualized decision-making and personalized medicine.

Results: There were associations between I148M variant and chronic viral hepatitis and autoimmune liver diseases and differential associations of I148M variant in donors and recipients with post-liver transplant outcomes. I148M variant may activate the development of steatosis caused by host metabolic disorders in chronic viral hepatitis, but few researches were found to illustrate the mechanisms in autoimmune liver diseases. The peripherally mediated mechanism (via extrahepatic adipose tissue) may play a principal role in triglyceride accumulation regardless of adiponutrin activity in the graft liver.

Conclusions: Evidences have shown the associations between I148M variant and mentioned diseases. I148M variant induced steatosis may be involved in the mechanism of chronic viral hepatitis and genetic considered personalized therapies, especially for PSC male patients. It is also crucial to pay attention to this parameter in donor selection and prognosis estimation in liver transplantation.

Keywords: PNPLA3; Polymorphism; Hepatitis B, Chronic; Hepatitis C, Chronic; Autoimmune Hepatitis; Liver Transplantation

1. Context

In 2008, a Single Nucleotide Polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 (PNPLA3, adiponutrin) gene or rs738409 polymorphism was reported to be significantly associated with liver fat content (1). This SNP represents a substitution from cytosine to guanine, resulting in a switch from isoleucine to methionine at residue I148 (I148M). Since then, extensive investigation on the association between PNPLA3 I148M or rs738409 polymorphism and liver diseases has been performed. Various studies revealed that the PNPLA3 I148M variant is associated with development and progression of liver disease, including non-alcoholic fatty liver disease (NAFLD) (2-4), alcoholic fatty liver disease (5) as well as susceptibility to hepatocellular carcinoma (HCC) (6, 7). However, its association with other inflammatory and autoimmune liver diseases has not been fully elucidated. Whether there is an association between the PNPLA3 I148M variant and chronic viral hepatitis and autoimmune liver diseases, and whether PNPLA3 I148M variant plays a role in liver transplantation has not been established, although some studies addressed these issues and demonstrated potential associations. Moreover, the mechanisms by which PNPLA3 I148M variant may be involved in development and progression of these diseases are largely unclear. Therefore, the aim of this article was to systematically review the current knowledge on the association between PNPLA3 I148M variant and chronic viral hepatitis and autoimmune liver diseases and its possible role in liver transplantation. The aim was also to explore underlying molecular mechanisms and translate them into more individualized decision-making and personalized medicine.

2. Evidence Acquisition

We systematically reviewed potential associations of I148M variant with chronic viral hepatitis, autoimmune liver diseases and the outcome of liver transplantation. All references were extracted from sources such as PubMed, EMBASE and other databases with keywords...
"PNPLA3 I148M", "hepatitis C", "HCV", "hepatitis B", "HBV", "autoimmune liver diseases", "autoimmune hepatitis", "primary sclerosing cholangitis", "PSC" and "primary biliary cirrhosis", "PBC" and "Liver Transplantation".

2.1. PNPLA3 I148M Variant and Chronic Viral Hepatitis

2.1.1. Association Between I148M Variant and Chronic Hepatitis C

Hepatic steatosis is a common symptom in patients with chronic hepatitis C (CHC) (8) and associated with severe fibrosis (9) and a low rate of sustained virological responses (SVR) to antiviral therapy (10). Moreover, steatosis is thought to be a possible risk factor of the development of HCC in hepatitis C virus (HCV) infection (11, 12).

In 2011, Valenti et al. reported the first study on the association between PNPLA3 I148M variant and CHC (13). The group analyzed two independent series of 325 and 494 CHC patients in Italy and found that the I148M variant was associated not only with liver steatosis, but also with fibrosis (13). At the same time, Trepo et al. in a study of 537 Caucasian CHC patients in Belgium, Germany and France, observed that PNPLA3 I148M variant favored steatosis and fibrosis progression in CHC (14). Recent studies indicated that the PNPLA3 I148M variant is a risk factor of fibrosis progression in CHC (15, 16). An increased association of the I148M variant with steatosis has been observed, especially in HCV infection with non-3 genotypes (17, 18) or in CHC patients with excessive abdominal fat (19). In the study by Zampino et al. (19) the waist circumference, which is highly correlated with visceral adipose tissue in children, adolescents and adults (20), increased the association of the I148M variant with liver steatosis. The group suggested a simple method to modulate the development of liver steatosis in CHC patients, healthy eating and moderate exercise to control body weight.

At present, the influence of PNPLA3 polymorphism on SVR remains controversial. On one hand, Valenti et al. reported that CHC patients with the I148M variant, who accounted for 10% of the patients, had a roughly 50% higher risk of cirrhosis than other PNPLA3 genotypes, and the I148M variant was significantly associated with a lower SVR rate in patients with genotype 1 and 4 HCV infection (15). Moreover, Valenti L et al. (21) reported this association between I148M variant and SVR in patients with genotype 1 and 4 HCV and bridging fibrosis, whereas there was no association in patients with genotypes 1 and 4 HCV without bridging fibrosis or in those with genotypes 2 and 3 HCV. On the other hand, Trepo et al. (14) observed no association between PNPLA3 and SVR. Clark and colleagues (22) also did not observe any association between the PNPLA3 I148M variant and SVR, although they further demonstrated the association between the PNPLA3 I148M variant and severe steatosis in patients with previously untreated genotype 1 HCV infection. This finding was confirmed by a recent Japanese study (23). These studies with negative results suggest that metabolic steatosis, rather than genetic steatosis, may be the possible mechanism of low SVR rate during antiviral therapy (24). Therefore, further investigations are required regarding the association between the PNPLA3 I148M variant and SVR to understand the mechanisms for treatment failure in patients undergoing antiviral therapy on the genetic level to improve diagnosis and treatment based on genetic risk stratification.

In their first study of this genetic polymorphism in CHC, Valenti et al. demonstrated an association of the PNPLA3 I148M variant with hepatocarcinogenesis (13), which was confirmed by others (25, 26). In 2013, Guyot et al. (27) observed that the PNPLA3 I148M variant was associated with an increased occurrence of HCC in patients with HCV-associated cirrhosis. In 2014, Sato et al. (28) reported that the PNPLA3 I148M variant accelerated hepatocarcinogenesis in CHC, which was determined by genotyping PNPLA3 in 358 hepatitis C- associated HCC patients. These findings all indicate the crucial role of the PNPLA3 I148M variant in hepatocarcinogenesis in CHC patients. Thus, taking this genetic factor into consideration would assist in creating a reasonable therapeutic strategy to prevent future development of HCC in CHC patients.

2.1.2. Association Between I148M Variant and Chronic Hepatitis B

In patients with Chronic Hepatitis B (CHB), steatosis also represents a common histopathological feature (29, 30). It is not only associated with severe fibrosis, but also with CHB progression (30, 31). Whether host genetic factors contribute to the pathogenesis of steatosis in CHB remains unknown. Vigano et al. demonstrated that PNPLA3 I148M polymorphism was an independent predictor of severe steatosis in Italian patients with biopsy-proven-CHB (32). However, this variant was not associated with CHB or HBV-related cirrhosis (33, 34).

2.1.3. Mechanisms of I148M Variant in the Two Chronic Viral Hepatitis

It has been postulated that lipid metabolism acts as a crucial factor in steatosis development. Disruption of lipid metabolism in CHC is reported to be viral genotype-specific (35-37), whereas, viral factors play a predominant role in the development of steatosis (36) in genotype 3 HCV infection, host metabolic disorders are the major determinants of hepatic steatosis in non-3 genotype HCV infection (37). To understand the possible role of PNPLA3 in viral factor-mediated steatosis, one needs to understand the importance of lipid metabolism in viral packaging. Lipids play a crucial role in the life cycle of HCV (38), for example, HCV escapes immune clearance and establishes persistent infection through host lipid metabolism (39). Thus, HCV has a unique feature; its assembly step is implicated in the host’s lipid metabolism (40). It has been demonstrated that intracellular distribution of lipid
droplets (LDs), which plays an important role in the de-
position of triglyceride and cholesterylesters (41), chang-
es profoundly in HCV infection (42). Moreover, virus as-
sembly is drastically impaired when the interaction of
HCV core protein with LDs is prevented (43). The PNPLA3
I148M variant has been shown to be associated with lipid
metabolism in many chronic liver diseases and over 90% of
the PNPLA3 protein are located in LDs in hepatocytes
(44). A recent study demonstrated that the I148M variant
increased LD development and functions (45), indicating
that the I148M variant may play a role in CHC-associated
steatosis through this virus-induced pathway (39), al-
though this possible mechanism needs to be further in-
vestigated.

The PNPLA3 I148M variant participates in host metabol-
ic disorders as well. The association of the PNPLA3 I148M
variant with steatosis or fibrosis is stronger in non-3 gen-
otype HCV infection than in genotype 3 HCV infection,
supporting the important role of host metabolic factors
in CHC and CHB (17, 18, 34). Recently, Sato et al. (28) sug-
gested that the PNPLA3 I148M variant may be involved in
hepatocarcinogenesis by inducing steatosis in the liver in
CHC, as the PNPLA3 I148M variant has been identified as a
risk factor of steatosis-mediated liver damage and fibro-
sis progression. Based on available findings, we hypothe-
size the possible mechanisms by which the PNPLA3 I148M
variant plays an important role in the development and
progression of liver diseases in chronic hepatitis (Figure
1). As stated above, the presence of steatosis is an essential
factor in historic progression of viral hepatitis and viral
features, such as genotypes and viral load play no role in
the association between PNPLA3 I148M variant and liver
disease, indicating that host metabolic disorders rather
than viral factors are the leading cause of steatosis in ei-
ther CHC or CHB (21, 32, 46). Thus, it is hypothesized that
viral and host factors are involved in the main mecha-
nisms of development of steatosis in hepatitis and the
PNPLA3 I148M variant may participate in the mechanisms
(Figure 1). However, further investigation is required re-
garding the underlying molecular mechanisms by which
PNPLA3 I148M polymorphism plays an important role in
viral hepatitis and development and progression of liver
diseases such as steatosis, fibrosis, cirrhosis and HCC in
chronic hepatitis to confirm the proposed hypothesis.

Figure 1. Role of the PNPLA3 I148M Variant in the Development and Pro-
gression of Liver Diseases in Chronic Hepatitis

2.2. PNPLA3 I148M Variant and Autoimmune Liver Diseases

Autoimmune liver diseases mainly include autoim-
une hepatitis, Primary Sclerosing Cholangitis (PSC) and
primary biliary cirrhosis (PBC) (47). They are cryptogenic
liver diseases and recent articles reported the rare cases
with them (48-50). Autoimmune hepatitis with biliary
tract involvement is always seen in PSC and PBC (51, 52).
Studies of the association of the PNPLA3 I148M variant
with autoimmune liver diseases are scarce.

A recent study showed that (53) the PNPLA3 I148M vari-
ant affects the disease course of PSC and significantly
decreased the actuarial survival rate free of liver trans-
plantation in PSC patients with severe bile duct struc-
tures. Interestingly, the study further demonstrated that
the association between this variation and PSC followed
a gender-specific pattern; the effect of I148M variant on
actuarial survival was shown only in male, but female,
PSC patients. This finding supports a previous report
demonstrating a gender-specific pattern, suggesting a
sexual dimorphism of the PNPLA3 I148M variant in NAFLD
development (54). This preliminary study suggested that
gene testing for the PNPLA3 I148M variant is recom-
ended due to the high risk of PNPLA3 I148M variant in
PSC male patients, to improve diagnosis and subsequent
therapies. Such an individualized decision-making and
personalized medicine approach, including risk stratifi-
cation, surveillance strategies and liver transplant al-
location, may be an optimal choice of management,
especially for male PSC patients. This study paved a new
avenue for studying the role of the PNPLA3 I148M variant
in autoimmune liver diseases; however, additional stud-
ies are needed to further elucidate the role of this variant
in autoimmune liver diseases.

2.3. PNPLA3 I148M Variant and Liver Transplanta-
tion

End-stage of liver disease is the most important indica-
tion for liver transplantation (55, 56) and the outcome of
liver transplantation, especially its complications affects
patients’ quality of life (57). It is worthwhile to investi-
gate the association of the PNPLA3 I148M variant with the
outcome of liver transplantation. CHC is the most common
reason for liver transplantation in Western countries (58).
In 2011, a preliminary study suggested that the PNPLA3 I148M variant in trans-
plant recipients was not associated with recurrent HCV
fibrosis progression (59). However, the study did not take
the donors’ PNPLA3 genotype into consideration. A re-
cent study showed that the PNPLA3 I148M variant in the
donors, rather than the recipients, was a risk predictor of poor post-Liver Transplant (LT) outcomes (i.e. increased
risk of fibrosis progression, re-transplantation, or death)
in CHC (60), indicating that liver rather than adipose tis-
ue, was the exact site where this effect occurs and the
donor genotype should also be a considerable factor
3. Results

The PNPLA3 I148M variant is associated with chronic viral hepatitis, mainly via development of steatosis caused by host metabolic disorders. Since the I148M variant was associated with hepatocarcinogenesis in CHC patients, taking I148M variant factor into consideration would assist in creating a reasonable therapeutic strategy to prevent future development of HCC in CHC patients.

There is a male gender-specific association between the PNPLA3 I148M variant and PSC with severe biliary strictures. However, additional studies are needed to further elucidate the associations and the role of this variant in autoimmune liver diseases not only in PSC, but also in autoimmune hepatitis and primary biliary cirrhosis.

The associations of PNPLA3 I148M polymorphism in donors or recipients and post-LT outcomes are listed in Table 1. Generally, PNPLA3 I148M variant of the donors, rather than the recipients, is a risk predictor of poor post-LT outcomes in HCV, including fibrosis progression or even a high re-transplant rate. In contrast, PNPLA3 I148M variant of the recipients, rather than the donors, is associated with post-LT metabolic disorders, including steatosis, obesity or diabetes mellitus/IFG. Recently, Dunn et al. reported that the PNPLA3 I148M variant did not increase post-LT mortality, despite the risk of this genotype for many severe liver diseases (60). However, further investigation is required to determine whether the PNPLA3 I148M variant is associated with prognosis of liver transplantation.

4. Conclusions

Evidences have shown associations between I148M variant and chronic viral hepatitis, autoimmune liver diseases and the outcome of liver transplantation and these could provide clues for personalized therapies, especially for PSC male patients and in donor selection and prognosis estimation in liver transplantation. Additional studies are needed to further illustrate the mechanisms of I148M variant in chronic liver disease.

Acknowledgements

We would like to thank the Qingdao Municipal Hospital for their supports.

Financial Disclosure

Yong-Ning Xin, Man Jiang and Shi-Ying Xuan reported receiving research grants and honoraria from Qingdao Municipal Hospital.

Funding/Support

This review was supported by the National Natural Science Foundation of China (NSFC, No. 81170337 (http://www.nsfc.gov.cn/)).

References

41. Olofsson SO, Bestrom P, Andersson L, Rutberg M, Levin M, Per-
man J, et al. Triglyceride containing lipid droplets and lipid
42. McLaughlan J. Lipid droplets and hepatitis C virus infection. Bio-
43. Morjia K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuu-
ra Y, et al. Hepatitis C virus core protein induces hepatic steatosis
45. Chamoun Z, Vacca F, Parton RG, Grenenberg J. PNPLA3/adiponutrin
46. Bugianesi E, Salamone F, Negro F. The interaction of metabolic
Suppl 1:S55–56.
47. Xia HHX. Liver Diseases and Autoimmunity. Journal of Clinical and
48. Deutsch M, Emmanuel T, Koskinas J. Autoimmune Hepatitis or
49. Geramizadeh B, Niekghabalian S, Shamsaifar A, Kazemi K, Malek-
hosseini SA. Hepatocellular carcinoma in two patients with auto-
immune hepatitis, a single center experience and review of the
50. Rezaee Zavareh MS, Alaviani SM, Karimisari H, Shafei M, Saiedi
Hosseini SY. Occult hepatitis C virus infection in patients with
autoimmune hepatitis. Hepat Mon. 2014;14(8).
51. Pratico AD, Salafia S, Barone P, La Rosa M, Leonardi S. Type II
Autoimmune Hepatitis and Small Duct Sclerosing Cholangitis
in a Seven Years Old Child: An Overlap Syndrome? Hepat Mon.
2013;13(2).
52. Najafi M, Sadjadi N, Etekhari K, Khodadad A, Motamed F, Fal-
lahi GH, et al. Prevalence of Celiac Disease in Children with Au-
53. Friedrich K, Rupp C, Hov JR, Steinebrunner N, Weiss KH, Stiehl A,
et al. A frequent PNPLA3 variant is a sex specific disease modifier
54. Sookoian S, Pirola CJ. Meta-analysis of the influence of I48M
variant of patatin-like phospholipase domain containing 3 gene
(PNPLA3) on the susceptibility and histological severity of nonal-
55. Murray RF, Carithers RLJ, Aasld . AASLD practice guidelines:
56. Dehghani SM, Haghighat M, Imanieh MH, Honar N, Nagarestani
AM, Malekpour A, et al. Autoimmune hepatitis in children: expe-
57. Lankarani KB. Liver Transplantation for Quality as well as Quan-
58. Akamatsu N, Sugawara Y. Liver transplantation and hepatitis C.
59. Do ON, Eurch D, Trautwein C, Neuhaus P, Neumann UP, Wasmuth HE. The common I48 M variant of PNPLA3 does not predict
fibrosis progression after liver transplantation for hepatitis
Donor PNPLA3 rs738409 genotype affects fibrosis progression in
et al. Patatin-like phospholipase domain-containing protein 3
rs738409-G in recipients of liver transplants is a risk factor for
62. Couto CA, Gelade CL, Doycheva IB, Kish J, Martin P, Levy C. Eth-
nicity predicts metabolic syndrome after liver transplant. Hepa-
B, et al. Investigation of PNPLA3 and IL28B genotypes on diabetes
doctor and obesity after liver transplantation: insight into mechanisms
64. Karke T, Kollmeier J, Böhm S, Müller J, Tröltsch M, Weimann A,
et al. Non-Invasive Characterization of Post-Transplant Fatty
Liver Disease Reveals High Prevalence of Graft Injury in Associa-
tion with Metabolic Syndrome, Recipient Pnpla3 Genotype and