DEGREE RESISTANCE DISTANCE OF UNICYCLIC GRAPHS

I. GUTMAN, L. FENG AND G. YU

Communicated by Alireza Abdollahi

ABSTRACT. Let G be a connected graph with vertex set $V(G)$. The degree resistance distance of G is defined as $D_R(G) = \sum_{u,v \in V(G)} [d(u) + d(v)] R(u, v)$, where $d(u)$ is the degree of vertex u, and $R(u, v)$ denotes the resistance distance between u and v. In this paper, we characterize n-vertex unicyclic graphs having minimum and second minimum degree resistance distance.

1. Introduction

Graph invariants, based on the distances between the vertices of a graph [2], are widely used in theoretical chemistry to establish relations between the structure and the properties of molecules [7, 8]. Let $G = (V(G), E(G))$ be a simple undirected graph with $n = V(G)$ vertices and $m = E(G)$ edges. In this paper all graphs considered are assumed to be connected. The ordinary distance $d(v, u) = d(u, v) \mid G$ between the vertices v and u of the graph G is the length of a shortest path between v and u [2].

The Wiener index is the sum of distances between all unordered pairs of vertices

$$W(G) = \sum_{u,v \in V(G)} d(u, v).$$

This graph invariant is the oldest and one of the most popular molecular structure descriptors [7, 8], well correlated with many physical and chemical properties of a variety of classes of chemical compounds. For details on its mathematical properties, see the survey [4].

MSC(2010): Primary: 05C12; Secondary: 05C07.

Keywords: Resistance distance (in graph), degree distance, degree resistance distance.

Received: 31 May 2012, Accepted: 9 June 2012.

Corresponding author.
A modified version of the Wiener index is the *degree distance* defined as \[D(G) = \sum_{\{u,v\} \subseteq V(G)} (d(u) + d(v))r(u,v) \]

where \(d(u) = d(u, G) \) is the degree (number of first neighbors) of the vertex \(u \) of the graph \(G \). The same quantity was examined in the paper [6] under the name *Schultz index*.

If \(G \) is a tree on \(n \) vertices, then the Wiener index and the degree distance are related as \(D(G) = 4W(G) - n(n-1) \) (for details see [6]).

The degree distance of graphs was much studied in the literature. In [1, 13, 14] general graphs with minimum \(D \) were examined. Tomescu [12] determined the unicyclic and bicyclic graphs with minimum \(D \)-value. Yuan and An [18] determined the unicyclic graphs with maximum \(D \)-value. Some further mathematical results on degree distance can be found in [3, 9, 10].

In 1993 Klein and Randić [11] introduced a new distance function named *resistance distance*, based on the theory of electrical networks. They viewed \(G \) as an electrical network \(N \) by replacing each edge of \(G \) with a unit resistor. The resistance distance between the vertices \(u \) and \(v \) of the graph \(G \), denoted by \(R(u,v) = R(u,v,G) \), is then defined to be the effective resistance between the nodes \(u \) and \(v \) in \(N \). This new kind of distance between vertices of a graph was eventually studied in detail (see [15, 16, 17] and the references cited therein).

For the following consideration it is important that \(R(u,v) = R(v,u) \), \(R(u,u) = 0 \) and that [11] \(d(u,v) \geq R(u,v) \) with equality if and only if there is a unique path linking the vertices \(u \) and \(v \).

If in the expression for the Wiener index, Eq. (1.1), the ordinary distance is replaced by resistance distance, then we arrive at the *Kirchhoff index*

\[K_f(G) = \sum_{u,v} R(u,v) \]

which also has been much studied in the mathematical literature.

If in the expression for the degree distance, Eq. (1.2), the ordinary distance is replaced by resistance distance, then we arrive at the invariant

\[D_R(G) = \sum_{u,v} (d(u) + d(v))R(u,v) \]

which we name *degree resistance distance* of the graph \(G \).

If \(G \) is a tree, then \(R(u,v) = d(u,v) \) for any two vertices \(u \) and \(v \). Consequently, the Kirchhoff and Wiener indices of trees coincide, as well as their degree distances and degree resistance distances.

To our best knowledge, the degree resistance distance is being considered here for the first time. In this paper we study the degree resistance distance of the simplest connected non-tree graphs, namely of unicyclic graphs.

The paper is organized as follows. In Section 2 we state some preparatory results, whereas in Section 3 we determine the unicyclic graphs with minimum and second–minimum \(D_R \)-value.
2. Preliminary Results

Lemma 2.1. [11] Let \(x \) be a cut vertex of a graph \(G \), and let \(a \) and \(b \) be vertices belonging to different components which arise upon deletion of \(x \). Then \(R(a, b) = R(a, x) + R(x, b) \).

Lemma 2.1 has the following important corollary. Let \(H \) be a connected graph and let \(u \) be its vertex. Denote

\[
R(v, u \ H) \\
v \in V(H)
\]

by \(R(u) = R(u \ H) \), and

\[
d(v) R(v, u \ H) \\
v \in V(H)
\]

by \(S(u) = S(u \ H) \).

Theorem 2.2. Let \(G_1 \) and \(G_2 \) be connected graphs with disjoint vertex sets, with \(n_1 \) and \(n_2 \) vertices, and with \(m_1 \) and \(m_2 \) edges, respectively. Let \(u_1 \ V(G_1), u_2 \ V(G_2) \). Construct the graph \(G \) by identifying the vertices \(u_1 \) and \(u_2 \), and denote the so obtained vertex by \(u \). Then

\[
D_R(G) = D_R(G_1) + D_R(G_2) + 2m_2 R(u_1 \ G_1) + 2m_1 R(u_2 \ G_2) \\
+ (n_2 - 1)S(u_1 \ G_1) + (n_1 - 1)S(u_2 \ G_2). \tag{2.1}
\]

Proof. Denote the abbreviations

\[
V_1 = V(G_1) \ u_1 \quad \text{and} \quad V_2 = V(G_2) \ u_2.
\]

In view of the structure of the graph \(G \), from the definition (1.2) of the degree resistance distance, we have

\[
D_R(G) = \sum_{x,y \ V_1} D_R(G_1) + D_R(G_2) + d(y \ G) \ R(x, y \ G) \\
\sum_{x,y \ V_2} [d(x \ G) + d(y \ G)] \ R(x, y \ G) \tag{2.2}
\]

Now,

\[
[d(x \ G) + d(y \ G)] \ R(x, y \ G) = D_R(G_1) - d(u_1 \ G_1) \ R(x, u_1 \ G_1) \\
\sum_{x \ V_1} \sum_{y \ V_1} d(x \ G_1) \ R(x, u_1 \ G_1) - d(u_1 \ G_1) \ R(x, u_1 \ G_1) \\
= D_R(G_1) - S(u_1 \ G_1) - d(u_1) \ R(u_1 \ G_1) \tag{2.2}
\]

and analogously

\[
[D(x \ G) + d(y \ G)] \ R(x, y \ G) = D_R(G_2) - S(u_2 \ G_2) - d(u_2) \ R(u_2 \ G_2). \tag{2.3}
\]

www.SID.ir
Further,

\[
[\mathcal{R}(x,y)_{G}] = [\mathcal{R}(x,y)_{G_1}] + [\mathcal{R}(x,y)_{G_2}]
\]

(2.4)

and analogously

(2.5)

\[
[\mathcal{R}(x,y)_{G}] = S(u_1 G_1) + d(u G) R(u_1 G_1)
\]

Finally,

\[
[\mathcal{R}(x,y)_{G}] = [\mathcal{R}(x,y)_{G_1}] + [\mathcal{R}(x,y)_{G_2}]
\]

(2.6)

because for \(i = 1, 2 \), the vertex set \(V_i \) has \(n_i - 1 \) elements, and because

\[
d(x) = 2m_i - d(u G_i) \]

Adding Eqs. (2.2)–(2.6) and taking into account that \(d(u G) = d(u_1 G_1) + d(u_2 G_2) \), we obtain Eq. (2.1). □

Let \(v \) be a vertex of degree \(p + 1 \) in a graph \(G \), such that \(vv_1, vv_2, \ldots, vv_p \) are pendent edges incident with \(v \), and \(u \) is the neighbor of \(v \) distinct from \(v_1, v_2, \ldots, v_p \). We form a graph \(G' = \sigma(G,v) \) by removing the edges \(vv_1, vv_2, \ldots, vv_p \) and adding new edges \(uv_1, uv_2, \ldots, uv_p \). We say that \(G' \) is a \(\sigma \)-transform of \(G \) (see Fig. 1).

Figure 1. The \(\sigma \)-transformation at \(v \).
Theorem 2.3. Let $G = \sigma(G, v)$ be a σ-transform of the graph G, $d(u)$ ≥ 1 (see Fig. 1). Then

$$D_R(G) = D_R(G).$$

Equality holds if and only if G is a star with v as its center.

Proof. Let $T = v, v_1, v_2, \ldots, v_p$ and let H denote the subgraph of G induced by the vertex set $V(G \setminus T)$. From the definition of $D_R(G)$, we have

$$D_R(G) = \sum_{x,y \in V(H-u), x,y \in T} [d(x) + d(y)] R(x, y) + \sum_{x \in V(H-u), x \in T} [d(x) + d(u)] R(x, u)$$

$$+ \sum_{x \in V(H-u), x \in T} (d(x) + d(v)) R(x, v) + \sum_{x \in V(H-u), x \in T} [d(x) + d(v)] R(x, v)$$

$$+ \sum_{x \in V(H-u), x \in T} [d(u) + d(v)] R(u, v).$$

After the σ-transformation, the degree of the vertex u increases by p, while the degree of the vertex v decreases by p. During the transformation, for $x, y \in V(H-u)$ and $x, y \in T$, $[d(x) + d(y)] R(x, y)$ does not change.

In G,

$$B_1 := \sum_{x \in V(H-u), y \in T, v} [d(x) + d(y)] R(x, y) = p \sum_{x \in V(H-u)} [d(x) + 1] R(x, u) + 2$$

while in G,

$$B_2 := \sum_{x \in V(H-u), y \in T, v} [d(x) + d(y)] R(x, u) + 1 = p \sum_{x \in V(H-u)} [d(x) + 1] R(x, u) + 1.$$

For the vertex u in G,

$$B_3 := \sum_{x \in V(H-u), x \in T, v} [d(x) + d(u)] R(x, u) + \sum_{x \in V(H-u)} [d(x) + d(u)] R(x, u)$$

$$= \sum_{x \in V(H-u)} [d(x) + d(u)] R(x, u) + 2p[1 + d(u)]$$

whereas for u in G,

$$B_4 := \sum_{x \in V(H-u), x \in T, v} [d(u) + p + d(x)] R(x, u) + \sum_{x \in V(H-u)} [d(u) + p + d(x)] R(x, u)$$

$$= \sum_{x \in V(H-u)} [d(u) + p + d(x)] R(x, u) + p[d(u) + p + 1].$$
For the vertex \(v\) in \(G\),
\[
B_5 := \sum_{x \in V(H-u)} [d(x) + d(v)]R(x, v) + \sum_{x \in T \setminus v} [d(x) + d(v)]R(x, v) + [d(u) + d(v)]R(u, v) \\
= \sum_{x \in V(H-u)} [d(x) + p + 1][R(x, u) + 1] + p(p + 2) + [d(u) + p + 1]
\]
whereas for \(v\) in \(G\),
\[
B_6 := \sum_{x \in V(H-u)} (d(x) + 1)[R(x, u) + 1] + 5p + d(u) + 1.
\]
From the above relations it follows
\[
B_1 - B_2 + B_3 - B_4 + B_5 - B_6 \\
= p \sum_{x \in V(H-u)} [d(x) + 1][R(x, u) + 2] - p \sum_{x \in V(H-u)} (d(x) + 1)(R(x, u) + 1) \\
+ \sum_{x \in V(H-u)} [d(x) + d(u)]R(x, u) + 2p[1 + d(u)] \\
- \sum_{x \in V(H-u)} [d(u) + p + d(x)]R(x, u) + p[d(u) + p + 1] \\
+ \sum_{x \in V(H-u)} [d(x) + p + 1][R(x, u) + 1] + p(p + 2) + [d(u) + p + 1] \\
- \sum_{x \in V(H-u)} (d(x) + 1)[R(x, u) + 1] + 5p + d(u) + 1 \\
= p \sum_{x \in V(H-u)} [d(x) + 2] + pd(u) - p 0.
\]
The equality holds if and only if \(H\) consists of only one vertex \(u\). This completes the proof. \(\square\)

Theorem 2.4. Let \(G\) be a unicyclic graph. Let \(u\) be one vertex on \(G\) such that there are \(s\) pendant vertices \(u_1, u_2, \ldots, u_s\) attached at \(u\). Let \(v\) be a vertex on \(G\) such that there are \(t\) pendant vertices \(v_1, v_2, \ldots, v_t\) attached at \(v\). Assume that
\[
G_1 = G - vv_1, vv_2, \ldots, vv_t + uu_1, uv_1, uv_2, \ldots, uv_t
\]
and
\[
G_2 = G - uu_1, uu_2, \ldots, uu_s + vv_1, vv_2, \ldots, vv_t.
\]
Then either $D_R(G) > D_R(G_1)$ or $D_R(G) > D_R(G_2)$.

Proof. Let $A = u_1, u_2, \ldots, u_s$, $B = v_1, v_2, \ldots, v_t$ and let H be the subgraph induced by $V(G)$ A, B. Further, let $R(u, v) = \ell$.

In the transformation $G \rightarrow G_1$ for any pair of vertices x, y satisfying either $x, y \in V(H - u - v)$, or $x, y \in A$, or $x, y \in B$, or $x \in A, y \in V(H - u - v)$, the term $[d(x) + d(y)]R(x, y)$ does not change. Then

$$D_R(G) = \sum_{x, y \in V(H - u - v)} [d(x) + d(y)]R(x, y) + \sum_{x \in V(H - u - v)} [d(x) + d(u)]R(x, u) + \sum_{x \in V(H - u - v)} [d(x) + d(v)]R(x, v)$$

$$+ \sum_{x \in A} [d(x) + d(v)]R(x, v) + \sum_{x \in B} [d(x) + d(v)]R(x, v)$$

$$+ \sum_{x \in A} [d(x) + d(u)]R(x, u) + \sum_{x \in B} [d(x) + d(u)]R(x, u)$$

$$+ \sum_{x \in A} [d(x) + d(y)]R(x, y)$$

$$+ \sum_{x \in A} [d(x) + d(y)]R(x, y)$$

$$+ 2(\ell + 2)s + t + t$$

and analogously,

$$D_R(G_1) = \sum_{x, y \in V(H - u - v)} [d(x) + d(y)]R(x, y) + \sum_{x, y \in V(H - u - v)} [d(x) + d(y)]R(x, y)$$

$$+ \sum_{x \in V(H - u - v)} [d(x) + s + 2]R(x, u) + s(s + 3) + (s + 3)(\ell + 1)t$$

$$+ \sum_{x \in V(H - u - v)} [d(x) + t + 2]R(x, v) + t(t + 3) + (\ell + 1)s(t + 3) + (s + 2 + t + 2)\ell$$
\[+ 4st + t \quad d(x) + 1 \quad R(x, u) + 1 \quad x \quad V(H - u - v) \]

\[+ [d(x) + s + t + 2]R(x, u) + s(s + t + 3) + t(s + t + 3) \quad x \quad V(H - u - v) \]

\[+ d(x) + 2]R(x, v) + 3(1 + 1)t + 3(1 + 1)s + (s + t + 2)\ell. \quad x \quad V(H - u - v) \]

So we get

\[D_R(G) - D_R(G_1) = t \quad 4\ell s + [d(x) + 2][R(x, v) - R(x, u)] \quad x \quad V(H - u - v) \]

By a similar reasoning one arrives at

\[D_R(G) - D_R(G_2) = s \quad 4\ell t + (d(x) + 2)R(x, u) - R(x, v) \quad x \quad V(H - u - v) \]

Hence, if \(D_R(G) - D_R(G_1) > 0 \) for \(i = 1, 2 \), then the result follows. If at least one difference is negative, say \(D_R(G) - D_R(G_1) < 0 \), then \(x \quad H - u - v \quad [d(x) + 2][R(x, u) - R(x, v)] > 4\ell s \) and therefore \(D_R(G) - D_R(G_2) > s(4\ell t + 4\ell s) > 0 \). This completes the proof. \(\Box \)

3. The Minimum and Second Minimum Degree Resistance Distance
 of Unicyclic Graphs

In this section, for convenience, we represent a unicyclic graph \(G \) with the unique cycle \(C_k = v_1v_2 \ldots v_kv_1 \) as \(G = U(C_k; T_1, T_2, \ldots, T_k) \), where \(T_i \) is the component of \(G - E(C_k) \) containing \(v_i \), \(1 \leq i \leq k \). Obviously, \(T_i \) is a tree rooted at \(v_i \). We say that \(T_i \) is trivial if it consists of an isolated vertex. We denote by \(H_{n,k} \) the graph obtained from \(C_k \) by adding \(n - k \) pendant vertices to a vertex of \(C_k \).

Theorem 3.1. Let \(G \) be a unicyclic graph of order \(n \) with girth \(k \). Then \(D_R(G) \quad D_R(H_{n,k}) \), with equality if and only if \(G = H_{n,k} \).

Proof. Let \(G = U(C_k; T_1, T_2, \ldots, T_k) \) as described above. By Theorem 2.3, \(T_i \) (1 \(i \leq k \)) is a star with center \(v_i \). From Theorem 2.4, there exists only one non-trivial star attached at \(C_k \), and this implies the result. \(\Box \)

Let \(C_k = v_1v_2 \ldots v_kv_1 \) be a cycle on \(k \) vertices. Then, for \(1 \leq i < j \leq k \),

\[R(v_i, v_j) = \frac{(j - i)(k - j + i)}{k} \quad \frac{k - 1}{k} \]
and

\[R(v_1 C_k) = \frac{k^2 - 1}{6}, \quad R(x, v_1) = \frac{k^2 - 1}{6}, \quad Kf(C_k) = \frac{k^3 - k}{12}. \]

For the graph \(H_{n,k} \), in view of Theorem 2.2, let \(G_1 = C_k \), \(G_2 = H_{n,k} - C_k + u \), where \(u \) is the only vertex on \(C_k \) with degree greater than 2. It is easy to see that

\[D_R(G_1) = 4Kf(C_k) = \frac{k^3 - k}{3}. \]

Note that, when \(r = n - k + 1 \), then \(W(K_{1,r-1}) = (r-1)^2 \). It follows that \(D_R(K_{1,r-1}) = D(K_{1,r-1}) = 4W(K_{1,r-1}) - r(r-1) = (r-1)(3r - 4) \) and hence

\[D_R(G_2) = (n - k)(3n - 3k - 1). \]

It is also easy to see that

\[R(u G_1) = \frac{k^2 - 1}{6}, \quad R(u G_2) = n - k, \quad S(u G_2) = n - k, \quad S(u G_1) = \frac{k^2 - 1}{3}. \]

Therefore it follows that

\[
\begin{align*}
D_R(H_{n,k}) &= D_R(G_1) + D_R(G_2) + 2k R(u G_2) + 2(n - k) R(u G_1) \\
&+ (n - k)S(u G_1) + (k - 1)S(u G_2) \\
&= \frac{k^3 - k}{3} + (n - k)(3n - 3k - 1) + 2(n - k)\frac{k^2 - 1}{6} + 2k(n - k) \\
&+ (n - k)\frac{k^2 - 1}{3} + (k - 1)(n - k) \\
&= \frac{1}{3} \times 9n^2 + (2k^2 - 9k - 8)n - k^3 + 7k.
\end{align*}
\]

Corollary 3.2. Let \(G \) be a unicyclic graph of order \(n \). Then

\[D_R(G) = \frac{1}{3} (9n^2 - 17n - 6). \]

The equality holds if and only if \(G = H_{n,3}. \)

Proof. It is easy to see that for \(3 \leq k \leq n \),

\[D_R(H_{n,k}) - D_R(H_{n,3}) = \frac{1}{3} (k - 3)(2kn - 3n - k^2 - 3k - 2) := f(n,k). \]

For \(k = n, n - 1, n - 2, 4, 5, 6 \), it can be checked that \(f(n,k) > 0 \). For \(7 \leq k \leq n - 3 \), \(f(n,k) \) is positive. For \(k = 3 \), \(f(k + 3, k) = \frac{1}{3} (k - 3)(k^2 - 11) > 0 \). Therefore, \(f(n,k) \) is positive, with equality holding if and only if \(k = 3 \). This implies the result. \(\square \)

Lemma 3.3. Let \(F_i(n,k) \) and \(F_0(n,k) \) be two graphs as depicted in Fig. 2. Then

\[D_R(F_1(n,k)) > D_R(F_2(n,k)), \quad D_R(F_2(n,k)) > D_R(F_2(n,3)), \quad \text{and} \quad D_R(F_0(n,k)) > D_R(F_2(n,k)). \]
Figure 2. Graphs mentioned in Lemma 7 and Theorem 8

Proof. For the graph \(F_i(n, k) \), let \(G_1 = K_{1, r-1} \), \(G_2 = H_{k+1, k} \) with common vertex \(v_1 \) and \(r = n - k \). Assume that the pendent vertex of \(G_2 \) is \(w \). It is easy to see that

\[
D_R(K_{1, r-1}) = (r - 1)(3r - 4), \quad D_R(H_{k+1, k}) = \frac{1}{3}(k^3 + 2k^2 + 8k + 1).
\]

In view of Theorem 2.2,

\[
R(v_1 G_1) = \sum_{x \in V(G_1 - v_1)} R(x, v_1) = n - k - 1,
\]

\[
R(v_1 G_2) = \sum_{x \in V(G_2 - v_1)} R(x, v_1) + R(v_i, v_1) + R(w, v_1)
\]

\[
= \sum_{x \in V(G_2 - v_1)} R(x, v_1) + R(v_i, v_1) + R(v_i, v_1) + 1
\]

\[
= \sum_{x \in V(C_k)} R(v_i, v_1) + R(v_i, v_1) + 1
\]

\[
= 2R(v_1 C_k) + R(v_i, v_1) + 1,
\]

\[
S(v_1 G_1) = d(x)R(x, v_1) = n - k - 1,
\]

\[
S(v_1 G_2) = d(x)R(x, v_1)
\]

\[
= \sum_{x \in V(G_2 - v_1)} d(x)R(x, v_1) + d(v_i)R(v_i, v_1) + d(w)R(w, v_1)
\]

\[
= \sum_{x \in V(G_2 - v_1)} 2R(x, v_1) + 3R(v_i, v_1) + R(v_i, v_1) + 1
\]

\[
= 2R(v_1 C_k) + 2R(v_i, v_1) + 1.
\]
Therefore

\[D_R(F_i(n,k)) = D_R(G_1) + D_R(G_2) + 2(k + 1)R(v_1 G_1) + 2(n - k - 1)R(v_1 G_2) \]
\[+ kS(v_1 G_1) + (n - k - 1)S(v_1 G_2) \]
\[= (n - k - 1)(3n - 3k - 4) + \frac{1}{3}(k^3 + 2k^2 + 8k + 1) \]
\[+ 2(k + 1)(n - k - 1) + 2(n - k - 1) R(v_1 C_k) + R(v_i, v_1) + 1 \]
\[+ k(n - k - 1) + (n - k - 1) 2R(v_1 C_k) + 2R(v_i, v_1) + 1 \]
\[= (n - k - 1)(3n - 3k - 4) + \frac{1}{3}(k^3 + 2k^2 + 8k + 1) \]
\[+ (3k + 1)(n - k - 1) + 4(n - k - 1)R(v_1 C_k) \]
\[+ 4(n - k - 1)R(v_i, v_1) + 3(n - k - 1) \]
\[= 3n(n - k - 1) + \frac{1}{3}(k^3 + 2k^2 + 8k + 1) \]
\[+ 4(n - k - 1)R(v_1 C_k) + 4(n - k - 1)R(v_i, v_1) \]
\[+ 3n(n - k - 1) + \frac{1}{3}(k^3 + 2k^2 + 8k + 1) \]
\[+ 4(n - k - 1) \frac{k^2 - 1}{6} + 4(n - k - 1) \frac{k - 1}{k} \]
\[\frac{1}{3k} (12 + 3k - 2k^2 - k^4 - 12n + kn - 9k^2 n + 2k^3 n + 9kn^2) \]
\[= D_R(F_2(n,k)) \]

i. e., \(D_R(F_2(n,3)) = \frac{1}{3}(9n^2 - 12n - 26)\).

It follows that \(D_R(F_1(n,k)) = D_R(F_2(n,k))\) and \(F_2(n,k) = F_k(n,k)\). Therefore

\[D_R(F_2(n,k)) - D_R(F_2(n,3)) = \frac{1}{3k} (k - 3) (-4 - 11k - 3k^2 - k^3 + 4n - 3kn + 2k^2 n) \]

Let \(f(k) = -4 - 11k - 3k^2 - k^3 + 4n - 3kn + 2k^2 n\). Then \(f(k) > 0\) for \(n \geq 8\) and \(k = 4, 5, 6, 7, 8\). Note that, for \(k = 8\) and \(n = k + 1\), one has

\[\frac{df(k)}{dk} = -11 - 6k - 3k^2 - 3n + 4k n \]
It follows that \(f(k) \neq f(8) > 0 \).

From above, we have \(D_R(F_2(n,k)) - D_R(F_2(n,3)) \geq 0 \), with equality if and only if \(k = 3 \).

For \(F_0(n,k) \), let \(G_1 = F_0(n,k) - C_k + v_1 \), \(G_2 = C_k \). Assume that the vertex of degree 2 in \(G_1 \) is \(u \) and its pendant neighbor is \(w \).

In view of Theorem 2.2, we have
\[
D_R(G_1) = 4W(G_1) - r(r - 1) = 3r^2 - 3r - 8,
\]
where \(r = n - k + 1 \), and
\[
R(v_1 G_1) = n - k + 1, \quad S(v_1 G_1) = n - k + 2, \quad S(v_1 G_2) = 2R(v_1 G_2) = \frac{k^2 - 1}{3}.
\]

Hence
\[
D_R(F_0(n,k)) = \frac{k^3 - k}{3} + 3(n - k + 1)^2 - 3(n - k + 1) - 8 + 2k(n - k + 1) + 2(n - k)\frac{k^2 - 1}{6} + (k - 1)(n - k + 2) + (n - k)\frac{k^2 - 1}{3} = \frac{1}{3}(-30 + 7k - k^3 + 4n - 9kn + 2k^2n + 9n^2).
\]

which finally yields
\[
D_R(F_0(n,k)) - D_R(F_2(n,k)) = \frac{1}{k}(-4 - 11k + 3k^2 + 4n + kn) > 0.
\]

This proves the result. \(\square \)

Theorem 3.4. Let \(G = H_{n,k} \) be a unicyclic graph of order \(n (\leq 8) \). Then \(D_R(G) \neq D_R(F_2(n,k)) \). Equality holds if and only if \(G = F_2(n,k) \).

Proof. Suppose that \(G \) has the second minimal degree resistance distance among all \(n \)-vertex unicyclic graphs. Suppose that the girth of \(G \) is \(k \). Then \(G \) has the form \(U(C_k; T_1, T_2, \ldots, T_k) \) as described above.

First, we claim that at most two of \(T_1, T_2, \ldots, T_k \) are not trivial. Assume the contrary, namely that \(T_1, T_2, T_3 \) are not trivial. By Theorem 2.3, they must be stars with centers \(v_1, v_2, v_3 \), respectively. Let \(V(T_1) = v_1, a_2, a_3, \ldots, a_r \), \(V(T_2) = v_2, b_2, b_3, \ldots, b_s \), \(V(T_3) = v_3, c_2, c_3, \ldots, c_l \). Then by Theorem 2.4, \(D_R(G) > \min D_R(G - v_2b_2 + v_1b_1) \) and \(D_R(G - v_1a_2 + v_2a_2) > D_R(H_{k}) \). This contradicts the choice of \(G \).

Next, if exactly two of \(T_1, T_2, \ldots, T_k \) are not trivial, then without loss of generality we may assume that these are \(T_i \) and \(T_i \), \(2 \leq i \leq k \). Then by Theorems 2.3 and 2.4 these are stars with centers \(v_i, v_i \), respectively. In other words, \(G \) is the graph of the form \(F \) as shown in Figure 2. Let \(V(T_1) = v_1, a_2, a_3, \ldots, a_r \), \(V(T_i) = v_i, b_2, b_3, \ldots, b_s \), where \(r + s + k = n + 2 \), \(r \geq 2 \) and \(s \leq 2 \). From Lemma
3.3, we have $r = 2$ or $s = 2$. Without loss of generality, assume that $s = 2$, i.e., that $G = F_i(n,k)$ is the graph shown in Figure 2. Then $r + k = n$. From Lemma 3.3, we have $i = 2$ or $i = k$.

If exactly one of T_1, T_2, \ldots, T_k is not trivial, then without loss of generality, we assume that it is T_1. Since $G = H_{n,k}$ and T_1 is not a star, from Theorem 2.3 it follows that G must be the graph $F_0(n,k)$ as shown in Figure 2.

From Lemma 3.3, $D_R(F_0(n,k)) > D_R(F_2(n,k))$, so we get the result.

Corollary 3.5. Let $G = H_{n,3}$ be a unicyclic graph of order $n \geq 12$. Then $D_R(G) \geq \frac{1}{3}(9n^2 - 12n - 26)$. Equality holds if and only if $G = F_2(n,3)$.

Proof. From Theorem 3.4, we have $D_R(G) \geq D_R(F_2(n,k))$. By Lemma 3.3, $D_R(F_2(n,k)) \geq D_R(F_2(n,3))$, which implies the result.

Acknowledgments

Feng and Yu were supported by the Natural Science Foundation of China (No. 11101245) and Natural Science Foundation of Shandong (Nos. ZR2011AQ005 and BS2010SF017). Gutman was supported by the Serbian Ministry of Science and Education, through grant No. 174033.

References

Ivan Gutman
Faculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia

Email: gutman@kg.ac.rs

Lihua Feng
Department of Mathematics, Central South University, Changsha, P. R. China, 410075, and School of Mathematics, Shandong Institute of Business and Technology, Yantai, P. R. China, 264005

Email: fenglh@163.com

Guihai Yu
Department of Mathematics, Central South University, Changsha, P. R. China, 410075, and School of Mathematics, Shandong Institute of Business and Technology, Yantai, P. R. China, 264005

Email: yuguihai@126.com