The Sesame Lignan Sesamin Attenuates Vascular Permeability in Rats with Streptozotocin-Induced Diabetes: Involvement of Oxidative Stress

Mehrdad Roghani 1, Tourandokht Baluchnejadmojarad 2, Farshad Roghani Dehkordi 3

1 Department of Physiology, School of Medicine and Medicinal Plant Research Center, Shahed University, Tehran, IR Iran
2 Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Cardiology and Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Tehran, IR Iran

ABSTRACT

Background: Cardiovascular disorders are a major cause of morbidity and mortality in diabetic patients. Increased vascular permeability is a hallmark of diabetic vasculopathy, and the administration of natural products with antioxidant activity could restore vascular function.

Objectives: In this study, the effect of chronic treatment with sesamin on vascular permeability in rats with streptozotocin (STZ)-induced diabetes was investigated.

Materials and Methods: Male diabetic rats received sesamin at a dose of either 10 or 20 mg/kg for 7 weeks, beginning 1 week after diabetes induction. Vascular permeability was estimated by measuring Evans blue dye extravasation. Oxidative stress markers, including malondialdehyde (MDA) and superoxide dismutase (SOD) activity, were also measured in aortic tissue.

Results: Extravasation of Evans blue dye increased significantly in the diabetic group compared to that in the control group (p < 0.05), and treatment with sesamin significantly and dose-dependently decreased this extravasation (p < 0.05). Diabetic rats also had elevated malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activity (p < 0.005-0.001), and chronic treatment with sesamin (20 mg/kg) significantly reversed the elevated MDA content (p < 0.05) and reduced SOD activity (p < 0.05).

Conclusions: Chronic treatment of diabetic rats with sesamin could dose-dependently improve aortic permeability, partly through the attenuation of oxidative stress in aortic tissue.

ARTICLE INFO

Article history:
Received: 02 Dec 2010
Revised: 10 Dec 2010
Accepted: 02 Jan 2011

Keywords:
Sesamin
Sesame
Diabetes mellitus
Capillary permeability
Oxidative stress

Implication for health policy/practice/research/medical education:
This work may pave the way for designing new treatments for attenuation of some diabetic complications due to increased vascular permeability.

Please cite this paper as:

1. Background

Diabetes mellitus (DM) is a major health problem in the 21st century; the prevalence of DM is increasing worldwide, and it is estimated to effect 366 million people by the year 2030 (1). Cardiovascular disorders continue to be the main cause of morbidity and mortality in diabetic patients, despite significant achievements in their diagnosis and treatment (2). Diffuse vasculopathy is a common feature of type 1 diabetes, and is characterized by increased vascular permeability and subsequent plasma extravasation (3). Most vascular complications in diabetics are due to increased serum glucose and augmented oxidative stress (4).
Sesamin, a major lignan in sesame seeds and oil, and its isomers have beneficial physiological effects, including antioxidant (5), anti-carcinogen (6), and anti-hypertensive activities (7, 8), and are capable of reducing serum lipids (9). Sesamin isomers have been suggested to enhance plasma levels of α- and γ-tocopherol in rats (10). Furthermore, recent studies have demonstrated that sesamin metabolites induce nitric oxide-dependent vasorelaxation in vitro (11), and that sesamin feeding enhances endothelium-dependent relaxation in deoxycorticosterone acetate (DOCA)-salt hypertensive rats (8).

2. Objectives
An aqueous extract of leaves from the sesame plant was previously shown to induce dose-dependent vasorelaxation in guinea pig aortas (12). However, the in vivo protective effect of sesamin against the vascular permeability in diabetes has not yet been documented. Therefore, this study was designed to assess, for the first time, the beneficial effect of chronic treatment with sesamin on the improvement of vascular permeability in rats with streptozotocin (STZ)-induced diabetes and to investigate the possible involvement of oxidative stress.

3. Materials and Methods

3.1. Animals
Male albino Wistar rats (Pasteur institute, Tehran, Iran) weighing 240–300 g were housed in an air-conditioned colony room at 19–23°C and were supplied with a standard pellet diet and tap water ad libitum. Procedures involving animals and their care were conducted in conformity with NIH guidelines for the care and use of laboratory animals (NIH publication 86-23, revised 1985).

3.2. Chemicals
Streptozotocin, formamide, sesamin, and components for SOD and MDA kits were purchased from Sigma Chemical (St. Louis, MO, USA). All other chemicals were purchased from Merck (Germany).

3.3. Experimental Protocol
The rats were rendered diabetic by a single intraperitoneal dose of 60 mg·kg⁻¹ of STZ that was freshly dissolved in ice-cold 0.1 M citrate buffer (pH 4.5). Age-matched normal animals that received an injection of an equivalent volume of buffer comprised a non-diabetic control group. One week after STZ injection, overnight fasting blood samples were collected and serum glucose concentrations were measured using the glucose oxidation method (Zistchimie, Tehran). Only those animals with a serum glucose level higher than 250 mg/dL were selected as diabetic. During the following weeks, diabetes was reconfirmed by the presence of polyphagia, polydipsia, polyuria, and weight loss. Normal and hyperglycemic rats (a total of 48) were randomly allocated and placed into 6 groups (3 per group): normal vehicle-treated control, sesamin-treated controls (2 subgroups), diabetic, and sesamin-treated diabetics (2 subgroups). Sesamin dissolved in carboxymethylcellulose was administered p.o. (using a gavage needle) at a dose of either 10 or 20 mg/kg, b.w. daily throughout the 7-week experimental period. Changes in body weight were recorded regularly during the study.

3.4. Measurement of Vascular Permeability
The Evans Blue (EB) dye extravasation technique was used to measure the permeability to albumin of capillaries in the aortic tissue from anesthetized rats. This technique is based on the principle that EB dye avidly binds to intravascular albumin, and is thus a reliable way to assess transvascular fluxes of macromolecules. This technique has been extensively validated and has been shown to be a reliable estimate of the extravasation and interstitial accumulation of albumin as previously described (13). Briefly, rats were anesthetized with a combination of ketamine (100 mg/kg) and xylazine (8 mg/kg), and then given an injection of EB dye saline solution (20 mg/kg) in the femoral vein. The dye was allowed to circulate for 10 min. Then, in order to remove any intravascular dye that would interfere with the EB that extravasated in aortic tissue, the thorax was cut and a transcardial perfusion with 100 mL of heparinized saline was applied through the left ventricle. Next, the descending aorta was dissected out and immediately weighed. One-third of each tissue sample was dried at 60°C for 24 hours and a dry/wet weight ratio was calculated. The remaining two-thirds of each sample was placed in formamide solution (2 mL/200 mg wet tissue) at 25°C for 24 hours to extract the dye. The amount of EB dye extracted was determined spectrophotometrically at 620 nm. The results were calculated from an EB dye standard curve (0.5–25 mg/mL), and was expressed as μg of EB dye per 100 mg of tissue dry weight.

3.5. Determination of MDA Concentration in Aortic Rings
After removing aortic segments and cleansing to remove extra tissue, they were blotted dry, weighed, and then processed to make a 5% tissue homogenate in an ice-cold 0.9% saline solution. The supernatant of the tissue homogenate was obtained by centrifugation at 1,000 × g for 5 min at 4°C. The MDA concentration (thiobarbituric acid reactive substances, TBARS) in the supernatant was measured as described previously (14). Briefly, trichloroacetic acid and TBA solutions were added to the supernatant, which was then mixed and incubated at 100°C for 80 min. After cooling on ice, the samples were centrifuged at 1,000 × g for 20 min, and the absorbance of the supernatant was read at 532 nm. TBARS results were expressed as MDA equivalents using tetraethoxypropane as a standard.
3.6. Measurement of SOD Activity in Aortic Rings

The tissue homogenate supernatant was obtained and SOD activity was measured as described previously (15). Briefly, the supernatant was incubated with xanthine and xanthine oxidase in potassium phosphate buffer (pH 7.8) at 37°C for 40 min. NBT was added, and blue formazan formation was monitored spectrophotometrically at 550 nm. The amount of protein that inhibited NBT reduction to 50% of maximum was defined as 1 nitrite unit (NU) of SOD activity.

3.7. Protein Assay

The protein content of the supernatant was measured by the Bradford method using bovine serum albumin (Sigma Chemical) as the standard (16).

3.8. Data and Statistical Analysis

All values are presented as mean ± SEM. Statistical analyses were carried out using repeated measure ANOVA and one-way ANOVA followed by Tukey post-hoc test. A p value of less than 0.05 was considered statistically significant.

4. Results

After the 8-week experimental period, the weight of the vehicle-treated diabetic rats was significantly lower than that of the controls (p < 0.005), and sesamin treatment at both doses, but particularly at 20 mg/kg, caused a non-significant increase in the weight of diabetic rats compared to vehicle-treated diabetic rats (Figure 1). Untreated diabetic rats also had elevated serum glucose levels compared to those of control rats (p < 0.0005), and treatment with sesamin, especially at a dose of 20 mg/kg, caused a non-significant decrease in serum glucose compared to...
the diabetic rats. In addition, sesamin treatment of con-
crol rats did not produce any significant change in serum
glucose levels (Figure 2). As a measurement of aortic per-
meability, extravasation of Evans blue dye from the capi-
llaries of rats in the diabetic group increased significantly
(by 130.2%) than that in the rats in the control group (p <
0.05), and treatment of the diabetic group with 20 mg/
kg sesamin significantly decreased this extravasation (p <
0.05). There was no significant difference in extrava-
sation between the sesamin-treated and vehicle-treated
control groups (Figure 3). Measurement of aortic lipid
peroxidation markers (Table 1) showed that STZ-induced
diabetes resulted in elevated MDA content and reduced
SOD activity in aortic tissue (p < 0.005–0.001), and chronic
treatment of the diabetic group with sesamin (20 mg/
kilogram) significantly reversed the elevated MDA content and reduced SOD activity (p < 0.05).

5. Discussion

In this study, administration of sesamin for 7 weeks did
not have a significant hypoglycemic effect; however, it
did reduce the enhanced permeability of aortic tissue
in diabetic rats. In addition, sesamin treatment also af-
ected oxidative stress markers; sesamin attenuated the
increased MDA content and reduced activity of SOD in
diabetic rats.

Vascular dysfunction is a complicating feature of diabe-
tes in humans and experimental models, and hypergly-
cemia is the primary cause of micro- and macrovascular
complications in the diabetic condition (17). Vascular
dysfunction and enhanced permeability in the diabetic
rat might be due to increased blood glucose levels and
decreased blood insulin levels. Hyperglycemia has been
shown to cause tissue damage through several mecha-
nisms, including advanced glycation end product (AGE)
formation, increased polyol pathway flux, apoptosis, and
reactive oxygen species (ROS) formation (18). Our results
showed that sesamin treatment did not have a hypogly-
cemic effect in STZ-induced diabetic rats; therefore, its
beneficial effect on the permeability of aortic tissue is
likely due to mechanisms other than a hypoglycemic ef-
fect. Sesamin has been shown to have an anti-inflamma-
tory property (19), and this may have led to the decreased
vascular permeability observed in the diabetic rats in
our study. In addition, some of the damaging effects on
the vascular tissue of diabetic animals are believed to be
due to enhanced oxidative stress, as shown by increased
MDA and decreased activity of defensive enzymes like
SOD (15), as was observed in this study. This could also
lead to diabetes-induced functional changes in vascular
endothelial cells and the subsequent development of
vascular malfunction. The results of the present study
showed that chronic treatment with sesamin significantly
decreased MDA content and increased SOD activity in
the aortic tissue of diabetic rats, indicating that the im-
provement in vascular permeability may be due in part
to the amelioration of lipid peroxidation and oxidative
injury. These results clearly suggest that another possi-
ble reason for the effect of sesamin on the improvement of
endothelial dysfunction and vascular abnormality is
due to its antioxidant capacity. There is also some evi-
dence that nitric oxide depletion is partly responsible for
the increased permeability of the vascular system in the
diabetic condition (20), and sesamin-induced enhance-
ment of endothelial NOS activity may have reduced the
permeability of aortic tissue in diabetic rats.

In conclusion, to the best of our knowledge, this is the
first study reporting that chronic sesamin treatment
could dose-dependently improve aortic permeability in
diabetic rats, partly through attenuation of oxidative
stress. Our data may be helpful in the development of
new natural drugs for diabetes that improve endothelial
function and prevent cardiovascular diseases.

Acknowledgments

Authors would like to thank Fariba Ansari for her excel-
lent technical assistance.

Financial Disclosure

None declared.

Funding/Support

This study was financially supported by the Iranian Na-
tional Science Foundation (grant # 85122/65), which is
affiliated with the Presidential Office of Iran.

References

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of
diabetes: estimates for the year 2000 and projections for 2030. Diabe-
2. Coccheri S. Approaches to prevention of cardiovascular complica-
improves endothelial dysfunction in renal hypertensive rats fed a high-
et al. Therapeutic impact of leptin on diabetes, diabetic complica-
tions, and longevity in insulin-deficient diabetic mice. Diabe-
tes. 2011;60(9):2265–71.
5. Ikeda S, Kagaya M, Kobayashi K, Tohyama T, Kiso Y, Higuchi N,
et al. Dietary sesame lignans decrease lipid peroxidation in rats fed
Suppressive effect of sesamin against 7,12-dimethylbenz[a]an-
thracene induced rat mammary carcinogenesis. Anticancer Res.
et al. Antihypertensive effect of sesamin. II. Protection against
two-kidney, one-clip renal hypertension and cardiovascular hy-
Effects of sesamin on aortic oxidative stress and endothelial dys-
function in deoxycorticosterone acetate-salt hypertensive rats.
9. Rogi T, Tomimori N, Ono Y, Kiso Y. The mechanism underlying
the synergetic hypocholesterolemic effect of sesamin and al-
pha-tocopherol in rats fed a high-cholesterol diet. J Pharmacol

Int J Endocrinol Metab. 2011;9(1):248-252
Sesamin Improves Vascular Permeability in Diabetes

Roghani M et al.


