Development of PCR assay for early detection of CMV infection in renal transplant recipients

Hadi Lashini¹, Zahra Goodarzi ¹, Mohammad Javad Hosseini ², Esmail Saberfar ¹*

¹ Research Centers of Virus and Vaccine, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
² Research Centers of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, IR Iran

ABSTRACT

Background: Cytomegalovirus (CMV) is an important viral pathogen in patients undergoing organ transplantation.

Objectives: We aimed to develop a molecular qualitative PCR assay for the detection of CMV DNA in clinical samples from renal transplant recipients.

Patients and Methods: Polymerase chain reaction (PCR) was performed for the assessment of CMV replication in two groups of renal transplant patients. Furthermore, the sensitivity of PCR for detection of CMV DNA from plasma relative to leukocyte was tested.

Results: CMV DNA was detected in 33 (25.9%) samples of 127 renal transplant patients. From 33 patients with positive PCR test, 20 patients had clinical symptoms and 13 (33.4%) of the patients had no clinical symptoms of disease. Also, the sensitivity of PCR assay for detection of CMV DNA from leukocyte relative to plasma is more.

Conclusions: The results suggest that The CMV PCR might be a useful tool for the early identification of patients at high risk of developing CMV disease. Furthermore the best sample for identify CMV infection is peripheral blood leukocytes (PBL).

Article history:
Received: 18 May 2010
Revised: 31 Jul 2010
Accepted: 28 Aug 2010

Keywords:
Cytomegalovirus
Polymerase chain reaction,
Renal transplantation
Peripheral blood leukocytes

Article Type:
Original Article

Implication for health policy/practice/research/medical education:
Due to importance of new diagnostic assays in renal transplant recipients, we suggest reading this interesting article for basic scientists like virologists and geneticians who are studying viral infections.

Please cite this paper as:
Patients and Methods

Patients and samples

Between January and November 2009, a cross-sectional study was conducted in 137 kidney transplant recipients. Patients were divided into two groups; 59 cases at the first week post transplantation and 78 cases at least 4 weeks after transplantation. A single blood sample was taken from each person for investigation of possible CMV infection. In this study, for comparison of sensitivity of PCR for detection of CMV DNA from plasma relative to leukocyte, corresponding EDTA whole blood and EDTA plasma specimens were obtained from that was in second group (fourth week after transplantation). Whole blood was stored using the Glycigel method and frozen at -70°C until DNA extraction. Among 137 patients, 93 were males and 34 females. The average mean of age of the patients was 41±1 years old.

DNA extraction from plasma

DNA was extracted from 250 µl plasma lysed in buffer (20 mM Tris-HCl, 1 mM EDTA, 0.5% sodium dodecyl sulfate) and digested with proteinase K (2 mg/ml) at 37°C for 24 h, followed by sequential phenol and chloroform extractions and ethanol precipitation. The extracted was stored at -70°C until tested.

DNA extraction from Leucocytes

DNA was extracted from Glycigel preserved whole blood using Cunningham method (3). The extract was stored at -70°C Cuntil processed.

In-house CMV PCR

CMV DNA was detected by PCR assay using pair primers associated with the glycoprotein B gene: 5’-CGGTTGGAGATCTGCCTAGGTCT-3’ (P1, sense nucleotides 82494-82515), 5’-CAAGGTCGGCTGGATATGAAC-3’ (P2, antisense nucleotides 82729-82750). PCR reactions were done in 25 µl mixture reaction containing the following: 5 pl target DNA, 0.4 pmol of each primer, 0.2 pl deoxynucleosidetriphosphate stock (containing 25 mM dATP, dCTP, dGTP, and dTTP) and 1 unit of Taq polymerase (Perkin Elmer Cetus, Norwalk, California, USA). PCR was performed with the following parameters: pre-heating at 94 °C for 3 min, 30 cycles of 94 °C for 30 s, 55 °C for 30s, 72 °C for 30 and a final 72 °C for 3min as a final extension step. The PCR products were isolated by 1.5% agarose gel electrophoresis, stained with ethidium bromide, and visualized by an ultra violet (UV) transluminator. Positive controls were included in each amplification. As little as 1 fg of plasmid DNA was amplified and detected (the result is not shown). The specificity of the assay was examined by amplifying DNA from a number of other herpes viruses including herpes simplex virus type 1 or 2, Varicella-Zoster virus, Epstein-Barr virus. The PCR assay did not cross-react with EBV, VZV, HSV1 and HSV2.

PCR assay according to commercial kit

In addition to in-house PCR, the second PCR assay was performed based on a commercial kit of Roche Company, according to the instructions of the manufacturer.

Results

Amplification of DNA with PCR disclosed that of 127 transplant patients, CMV DNA was detected in 33 (25.9%) samples. From 33 patients with positive PCR test, 20 patients had clinical symptoms of disease such as: fever, leucopenia, interstitial pneumonia and joint inflammation and 13 (33.4%) of the patients had no clinical symptoms of disease (Figure 1).

Detection of HCMV from leukocyte

Leukocyte samples from 10 renal transplant recipients, corresponding to their plasma samples were tested for the presence of CMV by the PCR assay. From 10 Leukocyte samples, PCR assay was positive for 4 patients, while their corresponding plasma had negative result. The patients that had CMV infection were similar to those who did not have infection with regards to age and sex. There was a good association between the in-house PCR and commercial PCR kit assays in all of the patients.

Sensitivity and specificity of the PCR assay

We determined the sensitivity of the PCR assay on a plasmid of known molecular length. The plasmid PTZ57R, which contains the 257 bp region of CMV gB gene, was serially diluted and subjected to 30 cycles of amplification. As little as 1 fg of plasmid DNA was amplified and detected (the result is not shown). The specificity of the assay was examined by amplifying DNA from a number of other herpes viruses including...
is useful to establish a diagnosis and to monitoring of CMV disease in these group of patients (7). There have been many studies evaluating the clinical utility of PCR-based assays for the detection of CMV DNA in the plasma or PBL. Some of them reported that diagnostic sensitivity of a PCR assay may be different according to oligonucleotide primers sets and also kind of clinical sample that used (3, 8-10).

In our study, the g8 oligonucleotide primer sets which amplify a fragment of the region that encodes the glycoprotein B were chosen. These primers were designed from the pattern strains AD169 and Towne; they amplify genome regions that are considered as a high degree of conservation of the epitope between the clinical isolates (12-14). Several comparative studies have demonstrated that g8 primer sets have high diagnostic sensitivity of HCMV infection among clinical strains (11, 15). Some published reports have suggested that in order to monitor CMV infections in immunosuppressed patients, the sample of choice next to plasma and serum is leukocyte (16-19). Although small in terms of patient numbers, our results demonstrated that there is difference between leukocyte and plasma with regard to the time of detection of CMV DNA by PCR prior to the onset of symptomatic CMV infection. Thus, leukocyte PCR assay seemed to be significantly more sensitive than plasma PCR. The sensitivity of the assay and earlier detection can be clinically important because start of antiviral treatment at this earlier time could be important for both better efficacy and reduced toxicity (20). However, a problem with this technique is that it may detect latent CMV DNA in these patients without active viral replication. To avoid this problem, we used primer sets belonging to a conserved gene that amplify the late regions of the CMV genome. Therefore, this assay is too sensitive and it may detect CMV DNA in asymptomatic patients who never develop CMV disease. As a result, we suggest that CMV monitoring in PBL could be superior to assays in plasma or serum. However, this remains to be virologically and clinically evaluated in future studies. In conclusion, we have shown that the detection of CMV-DNA by in house PCR is a very sensitive assay to diagnose CMV disease in renal transplant recipients and correlate with commercial kit of Roche Company. Thus, our in-house nucleic acid amplification methods are especially suitable for detection of low-level virus replication. However, despite its sensitivity, the quantitative PCR could be another alternative in the diagnosis of CMV infections and in the monitoring of the response to antiviral treatment as this may be a better predictive tool. Also, we have shown that PCR with PBL offers the advantage of providing an earlier detection compared to the time to detection with plasma which makes it a more optimal marker for preemptive therapy.

Financial support
None declared.

Conflict of interest
None declared.

Acknowledgments

We thank Mr. Sorosh and our colleagues in Research Center of Virus and Vaccine, Baqiyatallah University of Medical Sciences for their kind assistance.

References


