MINI REVIEW

Medicinal Uses and Pharmacological Actions of Five Commonly Used Indian Medicinal Plants: A Mini-Review

MUNIAPPAN AYYANAR and SAVARIMUTHU IGNACIMUTHU

Received July 11, 2007; Revised June 2, 2008; Accepted June 9, 2008

ABSTRACT

Man depends heavily on various plant species for his survival. Indian traditional system of medicine is based on empirical knowledge of the observations and the experience over millennia and more than 5000 plants are used by different ethnic communities in India. During the last few decades there has been an increasing interest in the study of medicinal plants and their traditional use in different parts of India. The present communication constitutes a review on the medicinal properties, ethnomedicinal uses and pharmacological activities of five common medicinal plants (Acalypha indica L., Achyranthes aspera L., Adhatoda vasica Medicus, Coriandrum sativum and Centella asiatica) used in Indian traditional medicine. These plants are known to contain various active principles of therapeutic value and to possess biological activity against a number of diseases.

Keywords: India, Medicinal plants, Pharmacology, Phytochemistry, Traditional medicine

Many of today’s synthetic drugs originated from the plant kingdom, and only about 200 years ago our pharmacopeia was dominated by herbal medicines [1]. The largest research fields, as defined by the number of publications describing bioactive plant-derived compounds in the last few years, are anti-tumour drugs, antibiotics, drugs active against tropical diseases, contraceptives, anti-inflammatory drugs, immunomodulators, kidney protectors and drugs for psychiatric use [2]. Herbal drugs are being proved as effective as synthetic drugs with lesser side effects [3]. Current estimates suggest that, in many developing countries, a large proportion of the population relies heavily on traditional practitioners and medicinal plants to meet primary health care needs. Although modern medicine may be available in these countries, herbal medicines have often maintained popularity for historical and cultural reasons [4]. WHO encourages countries to provide safe and effective traditional remedies and practices in public and private health services and it also published two monographs on medicinal plants with information on pharmacopeial summaries for quality assurance: botanical features, distribution, identity tests, purity requirements, chemical assays, and active or major chemical constituents, clinical applications, pharmacology, contraindications, warnings, precautions, potential adverse reactions, and posology, etc.

The Indian flora is extensively utilized as source of many drugs mentioned in the traditional systems of medicine. During the last few decades there has been an increasing interest in the study of medicinal plants and their traditional use in different parts of India. Indian medicinal plants are widely used by all sections of the population and it has been estimated that over 7500 species of plants are used by several ethnic communities. India possesses more than 500 tribal communities and even today, tribals and certain local communities in India practice herbal medicine to cure a variety of diseases and disorders [5]. During the last few decades there has been an increasing interest in the study of medicinal plants and their traditional use in different parts of India. Medicinal plants and traditional medicine are commonly used in Indian traditional medicine. These plants are known to contain various active principles of thera-
Pharmacological activities of Achyranthes aspera

Chakraborty et al. [9] have assessed the leaves for chemopreventive activity and suggested that, the leaf extract and the non-alkaloid fraction were valuable anti-tumor promoters in carcinogenesis. Gokhale et al. [15] reported that the ethanolic extracts of the plant possessed contraceptive spermicidal activity in vitro [18]. Decoctions of the plant have anti-inflammatory activity in vitro [18]. Decoctions of the plant have anti-inflammatory activity in vivo and may be used for the treatment of hypo-thyroidic subjects after standardization of the dose [22]. Immunomodulatory activity of the plant on the elicitation of antigenspecific mouse antibody response was reported by Vasudeva et al. [23]. The methanolic extract of leaves of the plant have anti-fertility activity and increased pituitary and uterine wet weights in ovarectimized rats, which might be exploited to prevent unwanted pregnancy and control the ever-increasing population explosion [24]. Vasudeva and Sharma [25] studied the ethanolic extract of the root for anti-fertility activity in proven fertile female albino rats and showed that, the extract possessed both anti-implantation and abortifacient activity and also exhibited estrogenic activity tested in immature ovariectimized animals.

Ethanol extract of the plant also reduced sperm counts, weight of epididymis, serum level of testosterone and testosterone activity of 3-beta-hydroxysteroid dehydrogenase, while motility of the sperm and activity of the HMG CoA reductase were not affected [26]. The cholesterol level in the testis, incorporation of labelled acetate into cholesterol, 17-ketosteroids in urine and hepatic and fecal bile acids were also increased and the results suggested that the plant caused reproductive toxicity in male rats by suppressing the synthesis of androgen.

ACALYPHA INDICA L. (Indian Acalypha, Euphorbiaceae)

An erect, annual herb found profusely throughout the plains of India as a weed. The plant is bitter, acrid, expectorant, purgative, emetic, gastrointestinal irritant, antispasmodic, demulcent, and anti-inflammatory. The plant is used for the treatment of diseases such as asthma, cough, dog, pneumonia, asthma, rheumatism and the decoction of the whole plant have abortifacient property [21].

Acalypha indica L. is a common weed and used various parts of this plant for the treatment of diseases such as asthma, cough, dog pneumonia, asthma, rheumatism and the decoction of the whole plant have abortifacient property [21].

The leaves of this plant played a role in changes in the system of medicine for the treatment of renal dropsy, bronchial affections and leprosy [7].

The leaves have been used for centuries in ethnomedicine for varied medicinal purposes [11]. Since time immemorial, it is in use as folk medicine. It holds a reputed position as medicinal herb in different systems of medicine in India. For example the various ethnic communities in India used the different parts of this plant to treat cold, cough, dysentery, eye complaints, headache, liver complaints, piles, rheumatism, scabies, burns, skin diseases, poison bites, toothache, stomach ache spleen enlargement, pneumonia and kidney troubles [7,8,12-14].

The composite extract of root of this plant possessed immobilizing factor that probably reduced motility of sperm by causing sperm non-viability by disrupting the membrane architecture of the sperm cell and it proved that the plant possessed potential contraceptive spermicidal activity [29].

An erect, annual herb found profusely throughout the plains of India as a weed. The plant is bitter, acrid, expectorant, purgative, emetic, gastrointestinal irritant, antispasmodic, demulcent, and anti-inflammatory. The plant is used for the treatment of diseases such as asthma, cough, dog, pneumonia, asthma, rheumatism and the decoction of the whole plant have abortifacient property [21].

Ethanol extract of the plant also reduced sperm counts, weight of epididymis, serum level of testosterone and testosterone activity of 3-beta-hydroxysteroid dehydrogenase, while motility of the sperm and activity of the HMG CoA reductase were not affected [26]. The cholesterol level in the testis, incorporation of labelled acetate into cholesterol, 17-ketosteroids in urine and hepatic and fecal bile acids were also increased and the results suggested that the plant caused reproductive toxicity in male rats by suppressing the synthesis of androgen.

Acalypha indica L. (Indian Acalypha, Euphorbiaceae)

An erect, annual herb found profusely throughout the plains of India as a weed. The plant is bitter, acrid, expectorant, purgative, emetic, gastrointestinal irritant, antispasmodic, demulcent, and anti-inflammatory. The plant is used for the treatment of diseases such as asthma, cough, dog, pneumonia, asthma, rheumatism and the decoction of the whole plant have abortifacient property [21].

Ethanol extract of the plant also reduced sperm counts, weight of epididymis, serum level of testosterone and testosterone activity of 3-beta-hydroxysteroid dehydrogenase, while motility of the sperm and activity of the HMG CoA reductase were not affected [26]. The cholesterol level in the testis, incorporation of labelled acetate into cholesterol, 17-ketosteroids in urine and hepatic and fecal bile acids were also increased and the results suggested that the plant caused reproductive toxicity in male rats by suppressing the synthesis of androgen.

Acalypha indica L. (Indian Acalypha, Euphorbiaceae)

An erect, annual herb found profusely throughout the plains of India as a weed. The plant is bitter, acrid, expectorant, purgative, emetic, gastrointestinal irritant, antispasmodic, demulcent, and anti-inflammatory. The plant is used for the treatment of diseases such as asthma, cough, dog, pneumonia, asthma, rheumatism and the decoction of the whole plant have abortifacient property [21].

Ethanol extract of the plant also reduced sperm counts, weight of epididymis, serum level of testosterone and testosterone activity of 3-beta-hydroxysteroid dehydrogenase, while motility of the sperm and activity of the HMG CoA reductase were not affected [26]. The cholesterol level in the testis, incorporation of labelled acetate into cholesterol, 17-ketosteroids in urine and hepatic and fecal bile acids were also increased and the results suggested that the plant caused reproductive toxicity in male rats by suppressing the synthesis of androgen.

Acalypha indica L. (Indian Acalypha, Euphorbiaceae)
Pharmacological activities of Acalypha indica

The ethanol leaf extract was found to significantly reduce the viper venom induced necrotic and haemorhagic lesions and this proves that the plant possesses potent snake venom neutralizing properties [29], 10% w/v of the extract of whole plant shows wound healing activity in rats [30]. Hiremath et al. tested the four successive solvent extracts of the whole plant for post-coital antifertility activity in female albino rats. Among the four extracts tested at two different doses, the petroleum ether and ethanol extracts of the plant was found to be most effective in causing significant anti-implantation activity and the antifertility activity was reversible on withdrawal of the treatment of the extracts. The leaf extract of the plant showed significant antibacterial activity and highest inhibition zone was observed against Aeromonas hydrophylia and Pseudomonas aeruginosa [31].

ADHATODA VASICA MEDICUS (Malabar Nut/Vasaka, Acanthaceae)

- It is a shrub growing throughout India especially in the lower Himalayan ranges. The plant is antiperiodic, astringent, diuretic and purgative. It is a highly valued Ayurvedic medicinal plant used for the treatment of asthma, cough, bronchitis and tuberculosis [7,8] and the flowers, leaves and root are possessed antispasmodic property. The tubercular activities were reported by researchers’ quite early [32,33]. It has been used as herbal medicine in treating a wide variety of diseases in India and the leaves of the plant are the main source of drug preparation. For example, the source of the drug ‘vasaka’, is well known in the indigenous system of medicine for its beneficial effects, particularly in bronchitis [34].

- Traditionally, A. vasica has been used for the treatment of bronchial disorders such as acute and chronic cough, bronchitis and asthma, and also as an expectorant in the treatment of acute and chronic bronchial catarrh and broncho-pulmonary disease. The leaves as well as flowers, fruits and roots are extensively used for treating cold, whooping cough, asthma and as antihelminic and the leaf juice is stated to cure diarrhea, dysentery and glandular tumor. The various parts of the plant is used in Indian traditional medicine for the treatment of asthma, joint pain, lumber pain and sprains, cold, cough, eczema, malaria, rheumatism, swellings, venereal diseases [7,8,12-14]. In homoeopathy, the plant has been used in the treatment of cold, cough, pneumonia, spitting of blood, fever, jaundice, catarrh, whooping cough and asthma [28].

Pharmacological activities of Adhatoda vasica

- The major data on traditional uses as well as ethnopharmacological and toxicological studies were reviewed by Claeson et al [6]. After that some more pharmacological studies have also been carried out in Sri Lanka, Madagascar, South Africa and Malaysia. It has been used as a traditional herbal medicine in Asian reflect on liver damage induced by D-galactosamine in rats [35]. The plant showed significant antitussive activity in rats [30]. Hiremath et al. tested the four successive solvent extracts of the whole plant for post-coital antifertility activity in female albino rats. Among the four extracts tested at two different doses, the petroleum ether and ethanol extracts of the plant was found to be most effective in causing significant anti-implantation activity and the antifertility activity was reversible on withdrawal of the treatment of the extracts. The leaf extract of the plant showed significant antibacterial activity and highest inhibition zone was observed against Aeromonas hydrophylia and Pseudomonas aeruginosa [31].

- A structural analogue of vasicinone possessed potent antiallergic activity in mice, rats and guinea pigs [40]. Unknown alkaloids from this plant showed pronounced protection against allergen-induced bronchial obstruction in guinea pigs. Chronic toxicity study was carried out in vasicine isolated from this plant in rats and monkeys [41]. Methanolic extract of the plant showed 60-70% anti-implantation activity in female albino rats [42]. Extract of the plant showed minimum inhibition in the growth of fungi, Microsporum gypseum, Chrysosporium tropicum and Trichophyton terrestre [43].

- Leaf of this plant showed 100% abortifacient activity in rats [44]. KanJang- an oral solution with a fixed combination of standardised extracts of Echinaacea purpurea, Adhatoda vasica and Eleutherococcus senticosus has been used in the relief of symptoms associated with the common cold (coughing and irritability of the throat) with a well-established medical use comprising over 50 million human daily doses [45]. The major efficacy of this solution is mainly due to the presence of A. vasica. Other constituents of KanJang have been showed to have anti-stress effects, which might be occasioned partly by an endocrine and partly by an immunomodulatory mechanism of action.

- A perennial creeping herb found throughout India on moist soil, especially along bunds and canals. The plant is bitter, acrid, sweet, cooling, soporific, cardio tonic, nervine tonic, stomachic, carminative, antileptic, diuretic and febrifuge. It is native to countries like Sri Lanka and Madagascar, and it is also used in Indian traditional medicine for the treatment of asthma, joint pain, lumber pain and sprains, cold, cough, eczema, malaria, rheumatism, swellings, venereal diseases [7,8,12-14]. In homoeopathy, the plant has been used in the treatment of cold, cough, pneumonia, spitting of blood, fever, jaundice, catarrh, whooping cough and asthma [28].
Pharmacological activities of Centella asiatica

Methanol extracts of Whole plant parts of this plant was studied for immunomodulatory activity and the results showed that significant increases in the phagocytic activity and total WBC count were observed and the ratio of the phagocytic index was also significant and this effect was probably mediated through their effect on cholinergic index and to improve mental function. Reports from different places have revealed that this plant has been used for wound healing, memory improvement, treating mental fatigue, bronchitis, asthma, dysentery, leucorrhoea, kidney trouble, urethritis, antiallergic and antineoplastic purposes, curing leucorrhoea and toxic fever [7, 8]. In homoeopathy, the plant is used in ulceration of womb, eczema, elephantiasis, ascariosis and in granular cervicitis [28]. Active constituents of the plant are used as components of many drugs and cosmetic preparations worldwide in the field of skin care. In addition, Madesol and Blastoestimulina are the most known pharmaceutical products that contain constituents of this plant as active ingredients [47].

The total phenolic compounds found in the leaf, root and petioles of C. asiatica are the major contributions to the antioxidant activities [57]. The whole plant extracts of C. asiatica was found to reduce gastric lesions induced by ethanol in both the ex-vivo and in-vivo models. The accelerated recovery of potential difference after ethanol incubation in extract treated gastric mucosa with a concomitant reduction in ulcer lesion areas suggested that C. asiatica extract protects the gastric mucosa by improving the integrity of the mucosal lining orders, which suggested that it may have anti-inflammatory effects and it may due to its strengthening action on gastric mucosal lining [50]. Treatments with the extracts of C. asiatica during the early postnatal developmental period of free radicals [58]. Cheng et al [59] studied the healing stages in mice, when the higher brain centers are mature and the effects of water extract of the plant and the active ingredient, can produce long lasting beneficial effects on the constituent of C. asiatica, asiaticoside on acetic acid mouse brain. Beneficial effects on cognitive functions induced gastric ulcers (kissing ulcers) in rats and they are probably mediated through their effect on cholinergic system and by influencing the neuronal morphology active ingredient are used as anti-gastric ulcers drugs.

Shukla et al [60] also revealed that asiaticoside extract exhibited an anti-oxidant property in cell line induced lymphoma-bearing mice. Effects of the water extract on the formation of azoxymethane (AOM)-induced aberrant crypt foci (ACF) and intestinal tumorigenesis in male F344 rats were investigated by Bunpo et al [54] and they showed the extract has a chemopreventive effect on colon tumorigenesis. Abdul Hamid et al [55] studied the antioxidative activity of various extracts from different parts of the plant including leaves, petioles and roots, using three types of solvents (ethanol, water and light petroleum) using a linoleic acid model system and the thiobarbituric acid test and the study showed that ethanol is the best solvent for extracting antioxidative compounds from different parts (roots, petioles and leaves) of the plant.

Roots exhibited higher antioxidative activity than either leaves or petioles with all types of solvent used. Adriamycin, also known as doxorubicin, a potent anti-tumor antibiotic used for the treatment of a variety of soft and solid human malignancies. C. asiatica could enhance myocardial antioxidants and significantly prevent the heart from adriamycin induced oxidative stress and it could offer a useful support to the adriamycin therapy by acting as a cardioprotective agent and thus prevented the extent of cardiac damage [56].

The potential use of C. asiatica could be increased significantly in both the liver and kidney in vitro and it indicated that the carboxyl and acetyl groups play important roles in the expression of immunological activity.
A glabrous, aromatic annula herb cultivated throughout India. The leaves are acrid, astringent, aromatic, analgesic, anti-inflammatory and stypic; fruits are aromatic, bitter, sweet, acrid, astringent, emollient, thermogenic, anti-inflammatory, anthelmintic, stomachic, carminative, digestive, appetiser, constipating, diuretic, anti-tryptic, stimulant, expectorant and anodyne (Nadkarni; Warrier et al). Coriander is widely distributed and mainly cultivated for the seeds. The seeds contain an essential oil (up to 1%) and the monoterpenoid, linalool, is the main component [62]. Coriander seed is a popular spice and finely ground seed is a major ingredient of curry powder. The seeds are mainly responsible for the medical use of coriander and have been used as a drug for indigestion, against worms, rheumatism and pain in the joints [62]. In folk medicine, the seeds of coriander are used as an aromatic, carminative, stomachic, antispasmodic and against gastrointestinal complaints such as dyspepsia, flatulence and gastralgia. The seeds are also used as an ingredient in the laxative preparations to prevent stomach gripping [7, 8]. In Morocco, coriander has been documented as a traditional treatment of diabetes, indigestion, flatulence, insomnia, renal disorders and loss of appetite, and as a diuretic and all parts of the plant are edible, but the fresh leaves and the dried seeds are the most common parts used in cooking [63].

Pharmacological activities of Coriandrum sativum

The seeds of coriander showed significant hypoglycemic activity by enhanced glycogenesis, glycolysis and decreased glycogenolysis and gluconeogenesis and may be due to increased utilization of glucose in liver glycogen synthesis and decreased degradation of glycogen to give blood sugar [64]). The biochemical effect of coriander seeds on lipid parameters in 1,2-dimethylhydrazine (DMH) induced colon cancer in rats were studied by Chitra and Leelamma [65] and they showed that the concentrations of cholesterol and cholesterol to phospholipids ratio decreased while the level of phospholipid increased significantly in the DMH control group compared to the spice administered group. It proves that coriander plays a protective role against the deleterious effects in lipid metabolism in experimental colon cancer. The aqueous extract of seeds has anxiolytic effect and may have potential sedative and muscle relaxant effects [66].

Wangensteen et al [67] evaluated the extracts of different polarity from leaves and seeds of coriander and coriander oil for their antioxidant activity and they found between the total phenolic content in the extracts and antioxidant activity. They also observed that the coriander leaves showed stronger antioxidant activity than the seeds, and in both parts of coriander, the ethyl 536ional medicine systems that have been in existence for thousands of years and continue to provide mankind with new remedies. From ancient literature to modern inhibit unwanted oxidation processes. In the carotenoids scientific records of traditional medicinal knowledge, fractions obtained from coriander etheric extract, b-540 there is evidence that plants supply the main medicinal carotenone has been identified as the principal antioxidant 541 source for peoples’ healthcare in developing Asian

Discussion and Conclusion

Plants have formed the basis of sophisticated tradi-
countries [75]. According to the WHO, 80% of the world’s population primarily those of developing countries rely on plant-derived medicines for their healthcare needs [76].

Research on medicinal plants and the search for plant-derived drugs require a multidisciplinary approach, with integrated projects, financial and technical support, and a very carefully planned strategy. The aims should not only consider demands in terms of public health, preservation of biodiversity and the technical qualification of each laboratory or research group involved [2]. Renewed interest in traditional pharmacopoeias has meant that researchers are concerned not only with determining the scientific rationale for the plant’s usage, but also with the discovery of novel compounds of pharmaceutical value [77]. Drug discovery from medicinal plants continues to provide new and important leads against various pharmacological targets including cancer, HIV/AIDS, Alzheimer’s, malaria, and pain. Several natural product drugs of plant origin have either recently been introduced to the United States market, or are currently involved in late-phase clinical trials [78]. In this context, the review ascertains the value of a great number of plants used in tribal medicine, which could be of considerable interest in the development of new drugs. The curative properties of drugs are due to the presence of complex chemical substances of varied composition (present as secondary plant metabolites) in one or more parts of these plants. This type of research must be promoted as a means for developing countries to understand the potential use of their plant resources, as well as a means to better promote basic healthcare.

This review showed that, the different parts of Achyranthes aspera, Adhatoda vasica, Coriandrum sativum and Centella asiatica exhibited various pharmacological activities on the basis of their use in traditional medicine. The potent chemical compounds found in the above plants are exciting advance in the search for the novel drugs. These plants are also proven to be very valuable to the discovery and utilization of medicinal natural products. The potential for the development of leads from the above plants for example, wound healing activity (Achyranthes aspera), anticybacterial activity (Adhatoda vasica), antidiabetic activity (Coriandrum sativum and Centella asiatica). It is also clear that much needs to be discovered, both as to the active ingredients and their biological effects. The information summarized here is intended to serve as a reference tool to researchers in the fields of ethnopharmacology.

REFERENCES

Archives of SID

CURRENT AUTHOR ADDRESSES

