کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Dam-break flow regime over mobile beds, a numerical CFD approach

Alireza Khoshkonesh, Ph.D. in hydraulics, water structures, department of water engineering, Bu-Ali Sina university, Hamedan 65178, (Islamic republic of Iran)
Email: alirezakhshknsh42@gmail.com
Fariba Ahmadi Dehrashid*, Ph.D. student in hydraulics, water structures, department of water engineering, Bu-Ali Sina university, Hamedan 65178, (Islamic republic of Iran)
Email: faribaahmadi91@gmail.com
Blaise NSOM, Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France
Email: blaise.nsom@univ-brest.fr
Saeed Gohari, Assistant professor of hydraulics structures, Department of Water Engineering, Faculty of Agri-culture, Bu-Ali Sina University, Hamedan, 65178, (Islamic republic of Iran)
Email: s.gohari@basu.ac.ir
Hossein Banejad, Associate professor of hydraulics, department of water engineering, college of agriculture, Fer-dowski university of Mashhad, Mashhad, 91735 (Islamic republic of Iran)
Email: banejad@um.ac.ir
Payam Heidarian, MSc in water and hydraulic structures engineering, Department of hydraulic structures, Faculty of civil and environment engineering, Tarbiat Modares University, Iran
Email: pym.heidarian@gmail.com

Abstract

In this paper, the effect of the sediment bed elevation on dam-break flow over mobile beds is scrutinized using the volume of fluid (VOF) method. While the equations of motion are tackled employing the finite-volume, standard k-ε closure model and the van Rijn bed load formula. The results show that an increase in the downstream bed elevation leads to reducing: a) the flow advancing distance and water rising over the end wall, b) the sediment transport rate downstream and c) the reservoir releasing rate. Further, the decrease in level-difference results in increasing the sheet-flow height. However, it does not affect the critical specific downstream of the dam. It causes the formation and evolution of two hydraulic jumps and scour holes in the near field and the downstream channel. The dimen-sions of the first scour hole are larger than the second one.

Keywords

Dam-break, Bed elevation, RANS, Mobile-bed, VOF.
Introduction
Apart from the environmental effects of the dam construction such as salinity in soil and underground water, the dam-break could be caused many life and property loss-es across the downstream region (Sallam et al. (2018)., samad et al. (2018)). Sediment eroded from the drainage catchment is trapped in the dam reservoir (Zhang et al. (2019)., Hirt and Nichols (1981)). In this connection, the effect of the bed initial elevation and material on the dam-break flow characteristics has been studied rarely (Hirt and Nichols (1981)., Nsom et al. (2019)., Khoshkonesh et al. (2019)., Lobovský et al. (2014)., Leal et al. (2002)., Capart and Young (1998)., Van Rijn (1984)).

Materials and Methods
The dam-break flow characteristics are scrutinized by following process: (i) tracking the free-surface by standard VOF method using Flow-3D package; (ii) calculation of fluid pressure by implicit method; (iii) simulating the turbulent flow through the standard k-ε model; (iv) evaluation the bed-load transport using van Rijn formula (Van Rijn (1984)).

Results
The cells diameter dc and the turbulence models considered as sensitivity analysis parameters (tables 1&2). The models performance in predicting the flow depth was evaluated using dam-break experiments (Lobovský et al. (2014)., Leal et al. (2002)). NRMSE values between 0 and 0.1, 0.1 and 0.2, 0.2 and 0.4 present perfect, proper and average fit, respectively.

Table 1. The NRMSE of the mesh cells mean diameter dc and turbulence models in the dam-break experiment [Lobovský et al. (2014)]

<table>
<thead>
<tr>
<th>duration of the dam-break t(s)</th>
<th>model A: 12.5-10</th>
<th>model B: 25-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRMSE values</td>
<td>0.16 0.28 0.37 0.45</td>
<td>0.16 0.28 0.37 0.45</td>
</tr>
<tr>
<td>k-ε</td>
<td>0.0385 0.0262 0.0995 0.0565</td>
<td>0.0389 0.0329 0.0471 0.0639</td>
</tr>
<tr>
<td>k-w</td>
<td></td>
<td>0.0434 0.0322 0.0471 0.0813</td>
</tr>
<tr>
<td>RNG</td>
<td></td>
<td>0.0434 0.0329 0.0471 0.0813</td>
</tr>
</tbody>
</table>

Table 2. The NRMSE of the van Rijn formula in the case dc = 25-20 [Leal et al. (2002)]

<table>
<thead>
<tr>
<th>duration of the dam-break t(s)</th>
<th>model D : sand bed</th>
<th>model E : pumice bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Rijn formula NRMSE</td>
<td>0.036 0.043 0.064 0.048</td>
<td>0.016 0.043 0.064 0.048</td>
</tr>
</tbody>
</table>

In tables 1&2, the model performance in predicting the flow depth is perfect. Whilst the computational efforts and the accuracy in dc = 25mm and k-ε model are lesser and higher than the other cases, respectively. The van Rijn formula [Van Rijn (1984)] shows high accuracy in predicting the bed profile (table 2). Where the initial bed elevation in the downstream \(H_{d0} \) is equal to zero, then \(r_s = H_{d0}/ H_{d0} = 0 \). Where it is equal to upstream \(H_{d0} \), then \(r_s = 1 \).
Figure (1). Evolution of free-surface and bed profiles of (a-f): sand bed; (g-l): pumice bed at \(t = 1s, 2s \) & \(5s \)

Figure (2). a-c: the first scour hole depth \(D_1 \), d: the second scour hole depth \(D_2 \) at \(t = 1s, 2s \) & \(5s \)
Hence, bed elevation does not affect the resistance and wall effects. Besides, rising the free surface height results in rising the wave front advancing distance \(x_f \). However, \(x_f \) values in sand are higher than the pumice because of higher mobility of pumice than the sand. An increase in \(r_s \) leads to rising the free-surface height \(H_w \) in the downstream. Further, two hydraulic jumps are formed at the downstream. In this connection, the plausible reasons are flume length (32m), bed resistance and wall effects. Besides, rising \(r_s \) leads to increasing the height of the second jump. The greatest height of the first jump \((r_s = 0.3) \) is about 0.36\(H_w \). Two scour holes are formed under the two jumps, because the flow shear stress exceeds the critical value of the bed. However, the deposition occurs in 0 < \(x < 3 \)m. The second hole emerges in \(x \approx 3 \)m. The result is not reported in (Sallam et al. 2018), Samad et al. 2018), Zhang et al. 2019), Hirt and Nichols 1981), Nsom et al. 2019), Khoshkonesh et al. 2019), Lobovský et al. 2014), Leal et al. 2002), Capart and Young 1998). In fig. 2a, \(D_1 \) is increased by increment \(r_s \) at \(t = 1 \)s. In figs 2b & 2c, sand and pumice diagrams are sleep reverse S-shape. An inflection point is observed in \(r_s = 0.5 \) and \(r_s = 0.7 \). While \(D_1 \) values in pumice are greater than the sand in \(r_s \leq 0.5 \), there is a reverse trend in at \(r_s \geq 0.6 \). In figs 2d & 2e, the diagrams of \(D_2 \) are irregular, while \(D_{2\text{max}} \) is about from the order of 1/5 the \(D_{j\text{max}} \). In figs 3a-3f, the ascending sections are roughly identical in the sand and pumice. Therefore, the subcritical flow within the reservoir does not dependent on the bed material. The least specific energy value in all diagrams is equal to \(E_c \approx 0.35m \). Hence, bed elevation does not affect the \(E_c \) values. The \(D/H_w \) values are increased through the increment of the \(r_s \) in the descending section. In fig. 4, each diagram is embodying three distinctive parts \((H_c/H_w)\), crest \((H_c/H_w)\), and end-points \((E_c/H_w)\) of the hydraulic jump. In fig. 4a, the flow regime is
changed from super- to subcritical by rising the \(r \). Indeed, the diagrams are displaced to the right side of the \(H_{s}/H_{0} \) axis. Therefore, the greatest and least Froude number values are equal to \(Fr_{\text{max}} = 2.8 \) in \(r = 0.1 \) and \(Fr_{\text{min}} = 0.33 \) in \(r = 1 \), respectively. In return, in fig. 54, the flow regime remains supercritical. In this figure the \(Fr_{\text{min}} \) is over than 3.5 times the corresponding value in fig. 4a. It means that the velocity at the crest of the second hydraulic jump is considerably higher than the first one. In fig. 4c, the flow regime is changed from super- to subcritical. In fig. 4d, the flow regime transforms from super- to subcritical.

Conclusions

The modeling results showed: rising the downstream bed elevation leads to a) increasing the water free-surface height in the downstream, b) reducing the wave front advancing distance to the downstream and rising water over the end-wall c) reducing the reservoir releasing rate. Likewise, two hydraulic jumps are formed at the downstream of the dam in all cases except the downstream with fixed-bed. Two scour holes appear under the first and second jumps. The depths of the holes are diminished by increment of the downstream bed elevation. Likewise, the range of the Froude number in the first jump is higher than the second one. Rising the bed elevation leads to changing the flow regime from super- to subcritical in jump regions. Ultimately, VOF has high accuracy in predicting the characteristics of the dam-break flow over mobile beds.

References

Leal JGAB, Ferreira RML, Cardoso AH. Dam-break wave propagation over a cohesionless erodible bed. XXX IAHR Congr. 2003;(2002).

کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله