Introspective Agents in Opinion Formation Modeling to Predict Social Market

Sajjad Salehi
ECE Department
University of Tehran
Tehran, Iran

Fattaneh Taghiyareh
ECE Department
University of Tehran
Tehran, Iran

Abstract— Individuals may change their opinion in effect of a wide range of factors like interaction with peer groups, governmental policies and personal intentions. Works in this area mainly focus on individuals in social network and their interactions while neglect other factors. In this paper we have introduced an opinion formation model that consider the internal tendency as a personal feature of individuals in social network. In this model agents may trust, distrust or be neutral to their neighbors. They modify their opinion based on the opinion of their neighbors, trust/distrust to them while considering the internal倾向. The results of simulation show that this model can predict the opinion of social network especially when the average of nodal degree and clustering coefficient are high enough. Since this model can predict the preferences of individuals in market, it can be used to define marketing and production strategy.

Index Terms— Opinion Formation, Agent Based Modeling (ABM), Social Networks, Social Market, Internal Tendency

I. INTRODUCTION

Opinion formation refers to the process by which the opinion of agents about one issue has been changed over time. This evolution in opinions usually is modeled based on the interaction of agents. But different factors like governmental policies and characteristics of individuals could effect this process [1, 2]. Opinion may be interpreted as the preference of customer about one product and opinion formation can be considered as a tool for modeling changes in these preferences [3]. So this model predicts the future sentiment of customers about one product and market trends. These models usually represent the social network as a graph where its nodes show the individuals and its links present the relations between individuals.

Opinion of individuals usually is modeled by a numeric value. This value may have different forms including discrete [4, 5], continuous [6], fuzzy [7], probabilistic [8] or a vector [9, 10] based on the application of model. Also, different internal characteristics of individuals like internal opinion [11], ability to satisfy other agents [12–14] and ability to maintain own opinion [13], self-confidence [5], emotion [Mansoori] and leadership ability [5, 16] can affect opinion formation process. As mentioned the relations have different attributes. A link may presents existence or lack of relations between members [4, 6], trust [7, 2] or trust/distrust [17, 18] between them. Trust/distrust usually is modeled by a signed numeric value or a tuple containing a continuous numeric value as a strength and a sign as a type of relation. Also different strategies are used to model how one individual may be influenced by others. Although the effect of internal values on opinion of individuals is emphasized by Kelman [3], almost all scholars in this area focus on external factors to model the process of opinion formation and the effect of internal tendencies is neglected.

The goal of our research is introducing an opinion formation model to describe changes in social members’ preferences about one product, considering their internal values called internal tendency. In this model each individual has a continuous value as opinion and a couple of (strength, action) as an internal tendency. Also each individual may trust another individual, distrust him or be neutral to him. In this model agents update their opinion based on their approximation of trusted neighbors’ opinion, their interacted neighbor and internal tendency. Also the trust network of individuals will be updated based on changes in their opinion.

The rest of this paper is organized as follows: In the next section a brief review of previous works is presented. Section 3 explains our proposed model and section 4 discusses the simulation results. Finally, the conclusion and future works are presented in section 5.

II. LITERATURE REVIEW

Opinion formation methods can be categorized based on the way that model the community. In these models a one or two dimensional lattice [4] or a graph [19, 20] is used for modeling social network. So each node shows one individual and features of individuals are represented by attributes of these nodes. Also links represent the relation of members that may presents the existence or nonexistence of a relation [21],trust between two individuals [11] or distrust/trust between agents [17, 18]. Although opinion formation models utilize different features for modeling each agent,all have a value to describe the opinion of them. This value might be discrete [22], continuous [6], vector of variables [9, 10] or a fuzzy number [23]. Some works consider two types of opinions; internal and external [1, 24]. In these works each individual focus on his internal opinion and try to express an external one so that it has minimum difference with his own internal opinion and external opinion of others. These works can be applicable in the cases, like negotiation, that individuals have a fixed opinion and they want to express an opinion to convince others. So individuals dont tend to change their internal opinion and only try to find a suitable external opinion. Banitich et.al [25] consider a discrete opinion and historical
feedback about opinion of others and change opinion of members based on social interaction and effect of peer groups.

Caruso and Castorina [26] try to analyze the behavior of social members in election while Ramirez and Pitt [5] investigate the impact of opinion leaders on social opinions. The opinion of individuals about products have been evaluated in [10, 22]. Also the purpose of some works is designing models to direct the social opinion to predefined targets. This work tries to model the dynamics of individual interaction in community. Campaign problem is considered in [24]. Finding a set of peoples whose positive opinion about an issue will maximize the overall positive opinion for the item in the community is named Campaign problem. These works could also be considered as an influence maximization problem modeled by Kempe et al. [27]. In the context of market, social opinions show the members preferences to different products [3]. As mentioned Some works in this area model the trust network between agents [11, 2]. In these works, a co-evolutionary process revise agents’ opinion based on the trust network and change trust network by modifying agents’ opinion. Trust network refers to the degree of trust/distrust value between members of network. This value could be modeled explicitly [17, 18, 28] or could be derived from other features [29, 30]. These works suppose agents try to change their opinions to close it to trusted neighbors and keep it away from distrusted ones. Some works only describe the process of opinion formation [31] while others want to investigate the conditions for creating bipartite consensus in social network [17, 18]. Bipartite consensus refers to the state in which all agents have a similar opinion value divided in two categories with different signs [17]. Also positive or negative relations could show the individuals evaluation from the status of others. Positive link shows higher status evaluation in one individual and negative link shows he believes the other has lower status [32]. From another perspective, relations could be considered as opinion of each agent about others and these opinions could be used to predict type of new relations [28]. Vectors of opinions and similarity among vectors are used to calculate probability of agreement or disagreement by Sirbu et al. [29], Chau et al. [30] modified the model introduced in [6]. They assume two agents could increase the distinction of their opinions if the difference of them is greater than predefined threshold. Defluent [6] models the opinion with a continuous value between 0 and 1 and considers a threshold as confidence interval for opinions. They assume two agents could increase the distinction of their opinions if the difference of them is greater than p. They also assume two agents could increase the distinction of their opinions if the difference of them is greater than p.

III. PROPOSED MODEL

In this section we try to present our proposed model. In this model, the opinion of each agent is a continuous value in [-1,1] presented by \(x_i \). Also, agents have an internal tendency presented by \(t \). In this model internal tendency is represented by a couple \((s, a)\) where \(s \) presents the strength of tendency and \(a \) represents the action that agent prefers. Strength has a continuous numeric value lied in [0, 1] while action is a discrete number with value 1, indicates tendency to buy one product, or -1, shows tendency to not buy that. The relation between agents is presented by \(r_{ij} \) that lied in [-1, 1] and \(i \) is index of first agent and \(j \) is index of second agent. When one agent, named \(i \), trust other agent, named \(j \), \(r_{ij} \) is greater than 0, in other hand when one agent distrust other, \(r_{ij} \) is less than 0. Also \(r_{ij} = 0 \) shows that agent \(i \) is neutral to agent \(j \) and agent \(i \) is not affected by this neighbor. The value of \(r \) shows the strength of relation between two agents and indicate the impact level of one agent on his neighbor. It is assumed that the network of relation between agents is static during opinion formation process. In this model each agent modify his opinion based on the opinion of his neighbors and his internal tendency. In each step first agent, named agent \(i \), is selected randomly. Then one of the neighbors of agent \(i \) called agent \(j \) that deference of his opinion with agent \(i \) is less than \(d \), |\(x_i - x_j \)| < \(d \), is selected randomly. If there is no agent with condition |\(x_i - x_j \)| < \(d \), agent \(i \) is considered as his own neighbor. \(d \) is a predefined threshold and considered as confidence interval for agents. So the opinion of agents is modified based on Equation 1.

\[
x_i = OD * r_{ij} * 0.5 + ESP + (s_i - |x_j|) * max(a_i * sign(x_i), 0) * |ESP - x_i| \tag{1}
\]
Where OD is the difference between opinion of agent i and opinion of agent j and calculated based on Equation 2, ESP is estimated social opinion, s is the strength of internal tendency and a is its action.

$$OD = \begin{cases} x_i - x_j & \text{if } r_{ij} > 0 \\ d - |x_i - x_j| & \text{if } r_{ij} < 0 \end{cases}$$ (2)

As mentioned if there are no agents in neighbor of agent i that difference in their opinions is less than d, agent i is selected as his own opinion. So in this case, $(x_j - x_i)$ is equal to 0 and is ignored. ESP is the estimation of agent i from his trusted network opinion and it is calculated based on equation 3. In proposed model, each agent knows his trusted neighbors and has an opinion history of them named h. h_{ij} shows the estimate of agent i from opinion of agent j. At step 1 he suppose all his neighbors have an opinion same as his own opinion. When he interacts with one of his neighbors, he updates this history.

$$ESP = \frac{\sum_{j \text{ where agent } i \text{ trusts agent } j \text{ and } |x_i - x_j| < d} r_{ij} \cdot h_{ij}}{\sum_{j \text{ where agent } i \text{ trusts agent } j \text{ and } |x_i - x_j| < d} h_{ij}}$$ (3)

So each agent change his opinion in effect of his interacted neighbor, $OD \cdot r_{ij} \cdot 0.5$, his estimation of trusted network opinion, ESP, and his internal tendency. In this case, agent notice to action derived from his opinion and action forced by internal tendency. Based on agent opinion, if his opinion is greater than 0, he prefers to select product 2 and if it less than 0 he prefer to select product 1. So when his opinion and his internal tendency has conflict, agent try to change his opinion to resolve it. It is important to note that agents consider their estimation from trusted network opinion. When their opinion is close to ESP, $|ESP - x|$ is small, they have less notification to their internal tendency.

IV. SIMULATION AND RESULTS

In this section, we try to explain the simulation of model and results of evaluation. In the first step we ran the simulation for a scale free network with 1000 nodes and average nodal degree of 20. In order to evaluate the model we define a measure named $Deviation$. In this area, agents try to form opinions similar to opinion of trusted neighbors and far from opinion of distrusted ones. So $Deviation$ of opinion is defined as equation 4.

$$Deviation = \frac{\sum_{j \text{ where agent } i \text{ trusts agent } j \text{ and } |x_i - x_j| < d} |x_i - x_j|}{\sum_{j \text{ where agent } i \text{ trusts agent } j \text{ and } |x_i - x_j| < d} 1} + \frac{\sum_{j \text{ where agent } i \text{ distrusts agent } j \text{ and } |x_i - x_j| < d} d - |x_i - x|}{\sum_{j \text{ where agent } i \text{ distrusts agent } j \text{ and } |x_i - x_j| < d} 1}$$ (4)

Figure 1 shows the value of deviation for scale free networks with different average nodal degree. Simulations ran 10 times for $d = 0.2$. Vertical axis shows the $Deviation$ while horizontal axis presents the average nodal degree. As presented, the value of $Deviation$ is decreasing while the average nodal degree of evaluated network is increasing. Since agents with more neighbors has more opportunity of interacting, they can form their opinion in effect of a larger portion of social network. Therefore, agents approach their opinion to more trusted neighbors and keep it far from more distrusted ones that leads to decrease in $Deviation$. Figure 2 presents the value of $Deviation$ for network with different clustering coefficient. Clustering coefficient is a local measure that indicates the tendency of each node in a graph to form a cluster with its neighbors. As presented in Eq. 5 this value is the fraction of number of triangles around one node and the potential ones. Also there is a global version of this measure to describe the overall tendency of all nodes by averaging local measurements for all nodes of graph. Figure 2 shows the value of $Deviation$ is decreased by increasing the value of clustering coefficient. For larger value of clustering coefficient agents have more dense relations with neighbors that cause they form some clusters. In other words agents form local communities where they have more local interactions and form similar opinion.

$$ClusteringCoefficient_i = \frac{\text{Numer of triangles around } i}{k_i(k_i - 1)}$$ (5)

Where k_i is the number of neighbors of node i.

In the next step we ran the simulation on Epinion\(^1\) dataset in this dataset individuals score products by selecting a discrete number between 1 and 5. Also each individuals may trust or distrust others. The frequency of score 1 approximately is equal zero. Therefore we assume individuals with score 2 or 3 don’t recommend one product and individuals with score 4 or 5 recommend it. In other hand, by intuition from continuous opinion and discrete action [38], we assume agents with opinion less than 0.5 don’t recommend one product and other agent recommend it. We suppose agents have an opinion derived from uniform distribution at the first step. Then the simulation with different values for parameters, as presented in Table I, ran for 380 products.

Then for each product, we compared actions derived from formed opinion with actions derived from distribution of opinion in original dataset and select nearest result. In other words we explored the parameter space and found best parameters for each product and then compared results of this parameters with original dataset. This comparison shows the results derived from simulation has distinction with dataset or not. For comparison the test of proportion is utilized [39]. If the result of this test is greater than or equal to 0.05, two

\(^1\) http://www.trustlet.org/extended_opinions.html
distribution is similar. Otherwise we have two distinct distributions. Out of 380 test, only 23 test has value less than 0.05 that shows 357 derived distribution is similar to original dataset. The frequency of p-values of proportion test is presented in Figure 3. To investigate the cause of changes in value derived from proportion test for different products, we compare this value with two features of product network, average nodal degree and clustering coefficient. Figure 4 presents the relation between average nodal degree of product network and the value derived from proportion test. This figure shows a positive correlation between these two variables. So we can conclude one of the main reasons that our model can’t predict an action distribution like original distribution in dataset is the degree of nodes in social network of these products. Also Figure 5 shows the relation of clustering coefficient and proportion test value. Like average nodal degree, clustering coefficient and proportion test has a positive correlation. In other words for networks with larger clustering coefficient, our proposed model predict more similar distribution. So average nodal degree and clustering coefficient as two structural features of product social network can affect performance of our proposed model to predict action distribution. As mentioned, we suppose the internal tendency of agents can be derived from some distributions and we evaluate our model by creating these value based on distributions explained in Table I. Now we try to predict the internal tendency of each agent to one product from his internal tendency to other products. In the first step, for each product, its frequent pattern is extracted based on the common individuals. In other words, for each product, all individuals that score that is considered. Then other products that more

<table>
<thead>
<tr>
<th>d</th>
<th>Strength of internal tendency</th>
<th>Action of internal tendency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0.2, 0.5, 0.8, 1.0</td>
<td>U(0, 1)</td>
<td>Sign(U(-1, 1))</td>
</tr>
<tr>
<td>0, 0.2, 0.5, 0.8, 1.0</td>
<td>N(0, 0.5)</td>
<td>Sign(N(0, 0.5))</td>
</tr>
<tr>
<td>0, 0.2, 0.5, 0.8, 1.0</td>
<td>N(-0.5, 0.5)</td>
<td>Sign(N(0.5, 0.5))</td>
</tr>
<tr>
<td>0, 0.2, 0.5, 0.8, 1.0</td>
<td>N(-0.5, 0.5)</td>
<td>Sign(N(-0.5, 0.5))</td>
</tr>
</tbody>
</table>

Figure 1 - The Deviation value for different average nodal degree

Figure 2 - The Deviation value for different clustering coefficient
Figure 3 - Histogram of proportion test value for selected products

Figure 4 - The relation of proportion test value and average nodal degree

Figure 5 - The relation of proportion test value and clustering coefficient
than 20% of these individuals expressed his opinion about them are selected as frequent pattern. In the second step for each product one decision tree is created based on his frequent pattern and entropy measurement. In the second step for each individual the value of internal tendency is approximated based on his opinion about other products and distribution of opinion on decision tree. Figure 6 presents the distribution of proportion test for simulation of model by extracting internal tendency from decision tree. Out of 297 selected products, only 20 test has value less than 0.05 that shows 277 derived distribution is similar to original dataset. In addition to average nodal degree and clustering coefficient that have effect on opinion prediction, we consider the fraction of average distance of selected agents to create frequent pattern and average distance of all individuals. Figure 7 shows this fraction has a positive correlation with proportion test value.

So for larger fraction, we can assume that selected individuals are the representative of larger range of social network and the approximated internal tendency is more exact. Therefore the action distribution is more similar to original one

V. CONCLUSION

In this paper we have introduced a model for opinion formation in social network where agents notify their internal tendency in addition to their social relations. In this model opinion of each agent has modeled by a numeric value that presents preference of one agent about one product. Also internal tendency is modeled by two value of strength and action. In each interaction one agent modify its opinions based on the interaction with one of its neighbors, his approximation from social opinion and internal tendency. In order to represent the the social network, a directed signed graph has been used. In this network each agent is modeled by one node and trust relation is modeled by signed weighted arcs. The proposed model can be used to predict opinion of social network about one product. For this, the structure of relations in social network must be identified. Also a buying history of individuals and opinion of some individuals in social network about that product is needed. So we can ran model for all individuals and detect the distribution of opinion in social network.

Considering the personal features of agents like age, race, leadership ability and selfishness can improve the results of
opinion formation process. Also this model can be extended by using structural features of social network like changes in relations and pattern of them. In this area other structural theory like structural balance and status theory has valuable information.

REFERENCES

