اثر روابط گونه‌ای بر رنگ‌دانه‌های فتوستز، پرولین، محتمل آب نسبی، و میزان اساس گیاه شنبله (Nigella sativa) و سیاه‌دانه (Trigonella foenum gracecum)

رضاشاه کاکولنده، سیف‌الله فلاح ۳ و علی عباسی سروکی۲

گروه زراعت، دانشکده شناوری، دانشگاه شهید ۱۳۹۵

(تاریخ دریافت: ۱۳۹۴/۰۵/۰۳، تاریخ پذیرش نهایی: ۱۳۹۵/۱۲/۲۰)

چکیده:

در آگراکوکسیستم پنک، مناطق خشکه و نیمه خشکه، حفاظت از جنگل‌های فیزیولوژیک گیاهان زراعی برای انجام فتوستر مطلوب و در نتیجه تولید منابع غذایی است. به منظور بررسی اثر آرایش کاشت بر حفاظت از پارامترهای فیزیولوژیک در گیاه شنبله و سیاه‌دانه تحت شرایط تنش خشکه، آزمایشی در دانشگاه شهید در سال ۱۳۹۳ انجام شد. در این آزمایش، سه مقایسه زیربرای کامل (آبیاری بر اساس ۱۰۰ دصرد چتریتی و نسیمی) در مراحل (آبیاری بر اساس ۹۵ دصرد W1، تنش شدید (آبیاری بر اساس ۹۰ دصرد W2) به عنوان عامل اصلی و پنگ آرایش کاشت شکل کشف خاصیت شنبله بودند که خاصیت سیاه‌دانه و سه نسبت مخلوط (۱:۳، ۲:۱، ۳:۲) شنبله و سیاه‌دانه به عنوان عامل فرعی بررسی قرار گرفتند. نتایج نشان داد که با افزایش تنش خشکه، میزان کلروفیل و دسترسی از تنش خشکه بیشتر از بقیه گروه‌ها بود. در گیاه شنبله، تیمار شنبله‌سیاه‌دانه (۱:۱) و کشف خاصیت به ترتیب با میانگین ۱۰/۵ و ۱۵/۵ میلی‌گرم در کرم بیشترین مقدار پرولین و تیمار شنبله‌سیاه‌دانه (۱:۱) با میانگین ۷۵/۵ میلی‌گرم در کرم میانگین مقدار پرولین را دارا بودند. علاوه بر این، بیشترین میزان اساس در کشف خاصیت و تیمار شنبله‌سیاه‌دانه (۱:۱) به ترتیب با میانگین ۱۴۹ و ۱۷۵ میلی‌گرم مشاهده شد. برای گیاه سیاه‌دانه نیز اگرچه کشف خاصیت نسبت به تیمارهای کشف خاصیت سیاه‌دانه وارد سیاه‌دانه تیمار آبیاری دارای اساس پیش‌تری‌ها، اما تحت شرایط تنش خشکه، آرایش‌های کشف خاصیت مطلوب در مقایسه با کشف خاصیت دارای آب نسبی بیشتر و چند مخلوط و اساس کمتری بودند. به طور کلی، نتیجه‌گیری می‌شود ایجاد روابط بین گونه‌ای در گیاهان می‌تواند راهکار مهمی برای حفظات چندهجه سیاه‌دانه فیزیولوژیک گیاهان از خصائص تنش خشکه پاشید.

واژه‌های کلیدی: روابط گیاهی، فتوستر، کلروفیل، کشف خاصیت

مقدمه:

تشخیص غیایی به شرایطی اطلاق می‌شود که در آن سلول‌ها و بافت‌ها در وضعیت قرار گیرند که آسایش آنها کامل نباشد. این حالت می‌تواند از چاپ‌های جزئی پاسیب‌آلی آب تا پیرامونی دامن گیاه متغیر باشد. به عبارت ساده که می‌تواند آب در گیاه زمانی

نویسنده مسئول، نشانی پست الکترونیکی: falah1357@yahoo.com

1395
مقایسه به تنش خشنگی در گیاهان مناسب مؤیّد هستند زیرا در شرایط خشنگی کاهش می‌یابد (2007، Singh). پروین در تعامل اندماهی گیاهی در طی تنش تجمیع می‌یابد. این اسید آمنی ذخیره شده در سیتوپلاسم برای حفاظت از ساختمان مارکولوکولی استفاده می‌کند و هیدروکسی پروتئین نیز در سنتز دیواره سلولی نقش دارد (2014، Hu et al.).

در شرایط تنش خشنگی آرامی کشت متعارف می‌تواند به عنوان یک راهکار به منظور حداکثر استفاده از نشانه‌ها و منابع محور آب به کار رود. به عنوان مثال دو گیاه شبلینه و سیاههانه به‌طور خاص موفق می‌باشد. سراسر مصرف آب توسط کشت خالص آن کشت خود شریک می‌شود. برخی کشت مخلوط می‌تواند در این مورد ظاهراً به این دلیل است که حتی در گیاه‌ها هم کشت می‌شود میزان رقابت کمتر از کشت خالص آنها است. کشت گیاهان زراعی مختلف در دوره‌هایی که یا یکدیگر هم‌پوشانی دارند، می‌تواند راه‌حلی مصرف آب در مناطق نیمه خشنگ یا به نهاد قابل ملاحظه‌ای انفیزیا دهد (376).

روستایی (2013) در کشت مخلوط شبلینه- سیاههانه اظهار داشت که بیشترین مقدار کارکردن a می‌باشد که سیاههانه (2:1) مشاهده گردید. همچنین بهارولوپ (1392) نیز مصرف آب در کشت مخلوط خوشه‌گیاری - کارا مشاهده نمود که مخلوط سبب انفیزیا می‌گردد که بسیار مشابه معنی‌دار کارکردن b خوشه‌گیاری نسبت به کشت خالص است. حسن زاده اول و همکاران (1389) در طی مطالعه کشت مخلوط مرزه و شبیر ایرانی بان داشتند که تیمارهای کشت مخلوط با انفیزیا تراکم مرزه از 27 میلیون تا 40 میلیون منجر به انفیزیا عمل‌کرد اساسی شده و محتوی نسبی آب برق و پتانسیل آب برق جهت بررسی
جدول 1- برخی ویژگی‌های فیزیکی و شیمیایی خاک محل آزمایش

<table>
<thead>
<tr>
<th>طبقات زراعی</th>
<th>ظرفیت زراعی</th>
<th>هدایت الکتریکی</th>
<th>بافت</th>
<th>ویژگی</th>
<th>واحد</th>
<th>رسی لوم</th>
<th>خاک</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/91</td>
<td>33/11%</td>
<td>0/76%</td>
<td>7/98%</td>
<td>1/47</td>
<td>50%</td>
<td>8/91</td>
<td>8/91</td>
</tr>
</tbody>
</table>

همچنان در ریفت‌هایی با فواصل ۲۵ سانتی‌متری و با تراکم زیاد در کرت‌هایی به ابعاد ۲۵/۲۵×۲۵/۲۵ متر انجام شد. اولین آبیاری پس از کاشت اتمام و آبیاری‌های بعدی در طول فصل رشد با توجه به نیاز آب گیاه و شرایط محیطی و بر اساس تیم‌بردار مورد اندازه‌گیری شد. در مرحله ۴ برکی، گیاهان برای رسیدن به تراکم مطلوب (۵۰ و ۱۰۰ بیو) در متر مربع به ترتیب به شیب‌پلوک و سیب‌انداز تک نشدن. در طول آزمایش وقیح دستی عفرای هر زرشک در مرحله گردش افتتاحیه (۲۵ روز پس از کشت) از هر کرت پس از حذف اثر حاشیه‌ای، ۱۰ نمونه تصادفی انتخاب شد. سپس رنگ‌های ۱۰ به طور تصادفی به جهت اندازه‌گیری صفات کاروفیل، کاروتفیل، کاروترو‌نی‌ها و محصولات خیلی حساس باشد. مقدار P ۳/۰۴ تا ۰/۵۰ است و اگر مقاوم عاده داشته باشد، این کنیک‌های است. براساس رابطه فوق‌الذکر، برای تیمار آبی‌یاری کامل مطالعه ۲۰۰ لیتر آب در هر کرت، برای تیمار نش و ۱۵۰ لیتر آب در هر کرت طراحی شده کارکرده و زمان آبیاری توسط دستگاه تایبیروپ در ۲۰ طرفیت زراعی مزرعه برای تیمار آبی‌یاری کامل در هر آبیاری کشت اتوبوس شد. زمان شروع تیمار بعد از استقرار کامل گیاه (مرحله پنج برگ گیاه شیب‌پلوک) بود. 

اگر گیاه و کشت هر دو گیاه در تاریخ ۱۷ خرداد به سوخته بوده و در شیب‌پلوک و سیب‌انداز از شرکت باکنار سپر اصفهان نیمه گیاه و کشت هر دو گیاه در تاریخ ۱۷ خرداد به سوخته بوده و در شیب‌پلوک و سیب‌انداز از شرکت باکنار سپر اصفهان نیمه
اندازهگری قند محلول: در زمان برداشت پس از نهی تهیه نمونه‌های تصادفی از بطور در گاه، قند محلول با ورش (1990) نیلزمن (2000) گرفته شد. ابتدا نمونه‌ها به همراه نمونه‌ها و بالا‌چاپ تا ظرف حاوی بخ قرار گرفته‌ند. سپس وزن تراکه‌ای پس از آن تهیه نمونه‌ها در آب مغز مطلب 24 ساعت در سردخانه داماد (4 درجه سانتیگراد) قرار داده شد. سپس وزن برق‌های اندازه‌گیری شد. درجه سانتیگراد قرارداده شد و وزن خشک هر کدام اندازه‌گیری شد. با دارای اعتماد حاصل از توزین در فرمل زیر محتمال نسبی آب گزینه بست ایا WRC = (Wf-Wd) × 100/Wt-Wd Wf = وزن خشک پس از قرار گرفت در اون (دمای 70 deceptive اولیه داماد) Wd = وزن برق اشتعال شده پس از قرار گرفت در آب مغز به مدت 14 ساعت Wt = وزن اولیه داماد RWC = (Wf-Wd) × 100/Wt-Wd

برای اندازه‌گری صفات زیر پس از رسیدگی فیزیولوژیک گذر (120 روز پس از کشت) و حذف اثر حاشیه‌ای، عدداد 10 غنیت از هر کرت به طور تصادفی انتخاب شد پس از بوجاری بذر، مقدار معینی بذر توزین شد و چهت تعین برونیل، قند محلول و اسید مورد استفاده قرار گرفت.

اندازه‌گری پرونیل: غلظت پرونیل بذر با استفاده از روشنی (1942) اندازه‌گیری شد. سیستم تهیه محلول استخراج پرونیل، 10 میلی‌لیتر از محلول 3 درصد استخراج 2000 سیستم محلول بسیار پرسته‌ای با استفاده از نرم افزار SAS و مقایسه میانگین‌ها با استفاده از نرم افزار MSTAT-C مقایسه میانگین‌ها با استفاده از آزمون انگر. مقایسه میانگین‌ها با استفاده از آزمون ANOVA و سطح احتمال 5 درصد انجام شد.

نتایج و بحث:
کارولینا a بر اساس نتایج تجربه واریانس اثر اثر آبی‌آبی کشت بر این صفت در گیاه شبنیلا و سیاه‌هند به ترتیب در
جدول ۲- تجربه واریانس اثر آراپیز کشت بر مقدار رنگدانه‌های فوستری در گیاه شیبلیه و سیاه‌های در شرایط تنش خشکی.

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>کاروتئن‌ها</th>
<th>کاروتئن‌ها</th>
<th>کاروتئن‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>شیبلیه</td>
<td>سیاه‌های</td>
<td>شیبلیه</td>
<td>سیاه‌های</td>
</tr>
<tr>
<td>درجه</td>
<td>تکرار</td>
<td>نتش خشکی (S)</td>
<td>خطای اصلی</td>
</tr>
<tr>
<td>۰/۰۸</td>
<td>۰/۰۱</td>
<td>۰/۰١</td>
<td>۰/۰۷</td>
</tr>
<tr>
<td>۰/۰۲</td>
<td>۰/۰۱</td>
<td>۰/۰۸</td>
<td>۰/۰۷</td>
</tr>
<tr>
<td>۰/۰۴</td>
<td>۰/۰۵</td>
<td>۰/۰۴</td>
<td>۰/۰۴</td>
</tr>
<tr>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
<td>۰/۰۶</td>
</tr>
<tr>
<td>۰/۰۸</td>
<td>۰/۰۸</td>
<td>۰/۰۸</td>
<td>۰/۰۸</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
<td>۰/۱۰</td>
</tr>
<tr>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
<td>۰/۱۲</td>
</tr>
<tr>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
<td>۰/۱۴</td>
</tr>
<tr>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
<td>۰/۱۶</td>
</tr>
<tr>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
<td>۰/۱۸</td>
</tr>
<tr>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
<td>۰/۲۰</td>
</tr>
<tr>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
<td>۰/۲۲</td>
</tr>
<tr>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
<td>۰/۲۸</td>
</tr>
<tr>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
<td>۰/۳۴</td>
</tr>
<tr>
<td>۰/۳۶</td>
<td>۰/۳۶</td>
<td>۰/۳۶</td>
<td>۰/۳۶</td>
</tr>
<tr>
<td>۰/۳۸</td>
<td>۰/۳۸</td>
<td>۰/۳۸</td>
<td>۰/۳۸</td>
</tr>
<tr>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
<td>۰/۴۰</td>
</tr>
</tbody>
</table>

سپر پراکسیداپور و در نتیجه تسهیله کلروفیل a می‌شوند (Sheteawi and Tawfik, 2007) کلروفیل a در شرایط بدون تنش مشاهده شد. تیمارهای کشت مخلوط در مقایسه با کشت خالص افزایش معناداری در میزان کلروفیل a نشان دادند. تحت شرایط نمای دلیل به ترتیب تیمارهای کشت مخلوط در مقیاس با کشت خالص در ۴/۰۵ و ۳/۵۸ افزایش داشتند. در گیاه سیاه‌های تحت شرایط بدون نتش مشاهده شد کلروفیل a از نظر این حالی این کشت شدید در میانگین ۱/۱۱ و ۱/۱۱ افزایش مشاهده شد. در تربیت میلی گرم بر دسرسی بیشتر به روی خاک و دسرسی بهتر به عناصر غذايی کاهش میزان اثرات تنش خشکی بر کلروفیل a شیبلیه و سیاه‌های مشاهده شد. 

در این مطالعه کشت خالص کلروفیل a در کشور ترکیه نشان داد که بیشترین مقدار کلروفیل a در کشور ترکیه مشاهده شد. کلروفیل b و مهم‌ترین کلروفیل b که در جدول تجزیه واریانس مشاهده می‌شود در گیاه شیبلیه و سیاه‌های اثرات تنش خشکی سطح احتمال ۱ و ۵ درصد معنادار دارد (جدول ۲). اثر مقابل تنش خشکی با آراپیز کشت بر میزان کلروفیل a در گیاه شیبلیه و سیاه‌های تحت شرایط در سطح احتمال ۵ و ۱ درصد معنادار شد (جدول ۲).

با توجه به مقایسه میانگین‌ها می‌توان اظهار نمود که در گیاه شیبلیه بیشترین میزان کلروفیل a تحت شرایط بدون نتش در تیمارهای شیبلیه: سیاه‌های (ب) و (ب) به ترتیب با میانگین‌های ۱۵/۶۹ و ۱۵/۶۹ میلی‌گرم بر گرم مشاهده شد (شکل ۱ این در حالی بود که در شرایط تنش شدید در تیمار بدون نتش سیاه‌های (ب) میزان کلروفیل a به میانگین ۸/۷۴ میلی‌گرم بر گرم از تیمارهای شیبلیه مشاهده شد. با توجه به نتایج فوق می‌توان اظهار نکرد که در تیمارهای کشت مخلوط به دلیل باعث بیشتر به خاک و دسرسی بهتر به عناصر غذایی کاهش میزان اثرات تنش خشکی بر کلروفیل a شیبلیه و سیاه‌های مشاهده شد. 

در این مطالعه کشف کرد که کلروفیل a نیز کلروفیل a در کشور ترکیه نشان داد که بیشترین مقدار مشاهده شد. کلروفیل b و مهم‌ترین کلروفیل b که در جدول تجزیه واریانس مشاهده می‌شود در گیاه شیبلیه و سیاه‌های اثرات تنش خشکی سطح احتمال ۱ و ۵ درصد معنادار دارد (جدول ۲). اثر مقابل تنش خشکی با آراپیز کشت بر میزان کلروفیل a در گیاه شیبلیه و سیاه‌های تحت شرایط در سطح احتمال ۵ و ۱ درصد معنادار شد (جدول ۲).
شکل 1- اثر منفیگی تشخیصی با آراشی کشت بر میزان کلروفیل b در گیاه شبلیله (a) و سیاه‌دانه (ب). میانگین‌های دارای حروف مشابه در سطح احتمال 0.05 درصد می‌باشند.

و آراشی کشت بر کلروفیل b در سطح احتمال 0.05 درصد و اثر معنی‌داری داشت (شکل 2). در گیاه سیاه‌دانه تحت شرایط بدون نش تنها تیمار‌های شبلیله سیاه‌دانه (1:1) و (2:1) نسبت به کشت خالص در رتبه بالاتری قرار گرفتند. حتی تعداد تیمار شبلیله سیاه‌دانه (1:1) تحت شرایط نش شدید در مقایسه با کشت خالص نسبت به کشت خالص نتایج مشابهی با کشت خالص (شکل 2). بررسی اثر ترکیب تشخیصی با آراشی کشت برای کلروفیل b و شبلیله سیاه‌دانه مشخص نمود که افزایش نش خشکی باعث کاهش میزان کلروفیل b می‌شود. با این تفاوت که میزان کاهش کلروفیل b برای گیاه شبلیله با شبیه بیشتری مشاهده شد (شکل 2). بیشترین میزان کلروفیل b در گیاه شبلیله در شرایط عدم تندر نش تیمار شبلیله سیاه‌دانه (2:1).

شکل 2- اثر منفیگی تشخیصی با آراشی کشت بر میزان کلروفیل b در گیاه شبلیله (a) و سیاه‌دانه (ب). میانگین‌های دارای حروف مشابه در سطح احتمال 0.05 درصد می‌باشند.
اثر رقابت گونه‌ای بر رشد‌های فوستژی، پروتئین، محیط‌آب نسبی و...

شکل 2- اثر مقایسه نیش خشک‌سازی با آراپیک در گیاه شنبله (a) و سیاه‌دانه (b). میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنادار اساس آزمون LSD در سطح احتمال 5 درصد می‌باشد.

مشاهده شد (Tambussi et al., 2000)، بهارلیه (1392) نیز در کشت مخلوط نخودفروشی و کلازا مشاهده نمود که در تیمار کشت مخلوط بهطور معنی‌داری نسبت به کشت خالص آراپیک کاهش یافته‌اند.

کاروتئن‌ها: نتایج نجیب و تریلیس‌ها از آن است که اثرات اصلی نیش خشک‌سازی و آراپیک کشت بر کاروتئن‌ها و گیاه در سطح احتمال 1 درصد معنی‌دار شد و گاه اثر مقابل نیش خشک‌سازی با آراپیک کشت بر این میزان سطح معنی‌داری نسبت به کشت خالص آراپیک کاهش یافته‌اند و سیاه‌دانه به ترتیب در سطح احتمال 5 درصد معنی‌دار بود (جدول 3). 

با توجه به مقایسه میانگینهای ارائه شده در شکل (3) 

میزان اظهار نودم که در گیاه شنبله بیشترین نیش خشک‌سازی کاروتئن‌ها در کشت خالص تحت شرایط نیش شدید و وجود داشت. کمترین میزان کاروتئن‌ها نیز در تیمار شنبله: سیاه‌دانه (12) تحت شرایط بدون نیش مشاهده شد. برای گیاه کاهش رشد‌های فوستژی می‌تواند ناشی از کاهش ساخت کمیکس اصلی رشد‌های کاروتئن، تخربی نوری کمیکس پروتئین رشد‌های که محفظت کندنه دست‌ها فوستژی است. سیاه‌دانه و پروتئین‌ها و با آراپیک، فعالیت آنزیم کاروتئن‌ها داشت.
شیبالتان داد که محتوای آب نسبی برگ تحت تیمارهای تنیست شکوفک و آرازی کش کش گرفت. اما مثابعین آیند و عمل بر محتوای آب نسبی برگ معنی‌دار نیستند. در گام سیاه‌رلينگی نسبی محتوای آب نسبی برگ کاسته شد (شکل 4). بیشترین محتوای آب نسبی برگ در تیمار بدون تنیست (بیانگین 67/45 درصد) وجود داشت و در تیمار تنیست شدید (بیانگین 44/85 درصد) کمترین میزان محتوای آب نسبی مشاهده شد. در شکل 4، میزان محتوای آب نسبی برگ مشابه می‌شود که بیشترین میزان محتوای آب نسبی برگ مربوط به آرازی کش که مکمل‌های مخلوط است. بطور معنی‌داری از کشت خالص بیشتر بود.

سیاه‌رلينگی نسبی بزرگ تحت تیمارهای تنیست شکوفک و آرازی کش گرفت. اما مثابعین آیند و عمل بر محتوای آب نسبی برگ معنی‌دار نیستند. در گام سیاه‌رلينگی نسبی محتوای آب نسبی برگ کاسته شد (شکل 4). بیشترین محتوای آب نسبی برگ در تیمار بدون تنیست (بیانگین 67/45 درصد) وجود داشت و در تیمار تنیست شدید (بیانگین 44/85 درصد) کمترین میزان محتوای آب نسبی مشاهده شد. در شکل 4، میزان محتوای آب نسبی برگ مشابه می‌شود که بیشترین میزان محتوای آب نسبی برگ مربوط به آرازی کش که مکمل‌های مخلوط است. بطور معنی‌داری از کشت خالص بیشتر بود.

محتوای آب نسبی برگ: نتایج تجربه برای گیاه
جدول 3- تجربه واریانس اثر آراوی کشت بر محتوای آب نسبی برگ، پویان، قد محلول و اناسنگی کشیده و سیاه‌دانه

<table>
<thead>
<tr>
<th>میانگین مرغی</th>
<th>درجه مهندسی</th>
<th>تغییرات آزادي</th>
</tr>
</thead>
<tbody>
<tr>
<td>مقدار محاسبه شده</td>
<td>تکرار</td>
<td>تست خشک</td>
</tr>
<tr>
<td>انسانی</td>
<td>پرولین</td>
<td>پرولین</td>
</tr>
<tr>
<td>0/00001</td>
<td>0/00002</td>
<td>0/00003</td>
</tr>
<tr>
<td>0/00008</td>
<td>0/00009</td>
<td>0/00010</td>
</tr>
<tr>
<td>0/00015</td>
<td>0/00016</td>
<td>0/00017</td>
</tr>
<tr>
<td>0/00022</td>
<td>0/00023</td>
<td>0/00024</td>
</tr>
<tr>
<td>0/00029</td>
<td>0/00030</td>
<td>0/00031</td>
</tr>
</tbody>
</table>

شاکل 4- اثر تست خشک (5) و آراوی کشت (5) بر محتوای آب نسبی برگ شیلینه. میانگین‌های حروف مشابه مقدار اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.

خلاصه مشاهده شد (شکل 5): برای گیاه سیاه‌دانه می‌توان یاد کرد که بیشترین محتوای نسبی آب برگ مربوط به تیم‌های بدون نش بود و با افزایش تنش آراوی‌های کشت مخلوط از محتوای آب نسبی برگ بالاتری برخوردار بودند. به طوری که در شرایط بدون نش بیشترین محتوای آب نسبی برگ در تیم‌های با کشت شیلینه سیاه‌دانه (1:1) و (2:1) مشاهده شد و در شرایط تنش مخلوط محتوای آب نسبی برگ در نسبی‌های مخلوط از نظر آماری برتری معنی‌داری در مقایسه با کشت خالص نشان داده. در شرایط تنش شدید کمترین محتوای آب نسبی برگ در کشت
شکل ۵- آمار مقیاس تنش خشکی و آراشی کشت بر محصول نسبی آب بزرگ‌گی سیاه‌هانه. میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال ۰/۰۵ می‌باشد.

شکل ۶- آمار کشت بر میزان پرولین شنبله (a) و سیاه‌هانه (b). میانگین‌های دارای حروف مشابه فاقد اختلاف آماری معنی‌دار بر اساس آزمون LSD در سطح احتمال ۰/۰۵ می‌باشد.

شکل ۷- توزیع مقیاس میانگین شکل و تنش شنبله با افزایش شدت خشکی. برای میزان پرولین در گیاه شنبله با افزایش شدت خشکی با شدت کمتر پرولین (۱:۲) و ۷/۳۵ میلی‌گرم در گرم بیشترین مقدار پرولین را داشتند (شکل ۷). نتایج مقیاس میانگین نشان داد که میزان پرولین در گیاه شنبله با افزایش شدت خشکی با شدت بیشتر افزایش یافت ولی در گیاه سیاه‌هانه این شیب کمتر بود (شکل ۷). یکی از مکانیسم‌های کارآمدی که گیاهان به هنگام مواجه شدن با خشکی برای حفظ ترکیبات و آماس سلولی در خدمت می‌گرند نظیر استرس از طریق تجمع فنگیا و استبداد آمیدن. نظر برولین است. هنگام در گیاه شنبله در تیمار تشید، مکانیسم‌های دفاعی گیاه در دوره دمای آب منجر به افزایش پرولین با میانگین ۲/۳۳ میلی‌گرم در گرم نسبت به بی‌خشکی بزینیت با میانگین ۱/۷۲ میلی‌گرم در گرم باعث شد.

به دسترسی بی‌خشکی در آراشی‌های کشت مخلوط گیاهان شنبله و سیاه‌هانه باعث شده است و همین امر موجب برتری وضعت رطوبتی تیمارهای مخلوط در مقایسه با کشت خالص شده است.

پرولین اثر تنش خشکی و آراشی کشت بر میزان پرولین گیاه شنبله و سیاه‌هانه در سطح احتمال ۱ درصد معنی‌دار شد و البته مقابل برای شدت بار نبود (جدول ۳).

در گیاه شنبله، نیاز شنبله: سیاه‌هانه (۱/۱) و کشت خالص به ترتیب با میانگین ۱/۵۵ و ۱/۱۵ میلی‌گرم در گرم بیشترین مقدار پرولین و نیاز شنبله: سیاه‌هانه (۱/۵) با میانگین ۹/۷۵ میلی‌گرم در گرم کمترین مقدار پرولین را دارا

به افزایش پرولین با میانگین ۱۸/۷۴ میلی‌گرم در گرم نسبت به
گیاه سیاه‌دانه با میانگین 9/87 میلی‌گرم در گرم به دست آمد. از سوی دیگر، در شرایط خشکی هنگامی که میزان سیاه‌دانه به میانگین 0/27 میلی‌گرم در گرم شده است، میزان‌های دیگر از کاهش سیاه‌دانه در شرایط رطوبتی احتمالاً افزایش و در توجه می‌باشد که با احتمال افزایش، در توجه به میزان مقدارهای بالا و همچنین باعث گسترش آزمایش پرتوشیمی و تبدیل این به این مقدار در طی مدت سه‌ماهه پرتوشیمی است. همانطور که در شکل 10 مشاهده می‌شود در هر دو آزمایش، کم‌ترین میزان پرتوشیمی مربوط به طیف‌های جداکش خاصه، با توجه به منطقه‌ی ارسیاز می‌باشد. با افزایش دریافت سلولار و فرکانس در یک نتیجه‌ی حاکمی که روشی خاصی که روشی با پایین حسی خاصی می‌باشد، نشان می‌دهد که این نتیجه در پایین‌ترین میانگین داده شده است. این نتیجه از این پرتوشیمی‌الیا در بزرگ‌ترین کم‌ترین خاص شده است. 

قطع محلول: براساس نتایج تجزیه واریانس مشاهده شد که در گیاه سیاه‌دانه، میزان پرتوشیمی فقط تحت تأثیر بیشتر نشان داد. این نتایج از آزمایشات این در تحقیق شکل مشاهده شد که با افزایش در تحقیق، دقت تحقیق کم‌ترین نشان داد. این نتایج از این پرتوشیمی‌الیا در بزرگ‌ترین کم‌ترین خاص شده است. این نتایج از این پرتوشیمی‌الیا در بزرگ‌ترین کم‌ترین خاص شده است.
شکل 8- اثر تنش خشکی (a) و آراشی کشت (b) بر قند محلول شیلیه. میانگین‌های حروف مشابهی فاقد اختلاف آماری معنادار بر اساس LSD در سطح احتمال 5 درصد می‌باشند.

شکل 9- اثر مقاومت تنش خشکی و آراشی کشت بر میزان قند محلول (a) و اساس (b) سیاهدان در شرایط تنش خشکی. میانگین‌های دارای حروف مشابهی فاقد اختلاف آماری معنادار بر اساس آزمون LSD در سطح احتمال 5 درصد می‌باشند.

اساسی: تجربی تجزیه واریانس برای گیاه شیلیه حاکی از آن است که میزان اساس در تیم‌های تنش خشکی و آراشی کشت در سطح احتمال 1 درصد معنی‌دار بود (جدول ۳). طبق مقایسه میانگین‌ها در شکل 10 می‌توان بیان کرد که با توجه به اینکه هیچ‌یک از مقایسه‌ها معنی‌دار نبود، میزان اساس در تیم‌های تنش خشکی و آراشی کشت در سطح احتمال 1 درصد معنی‌دار نبود (جدول ۳).
نمود که در گیاه شنتی پیشترین میزان اساس در تیمار نش خشکی شدید با میانگین 137 گرم بر کیلوگرم مشاهده شد. اما برای آراشیه‌های کشت بیشترین میزان این صفت در تیمارهای کشت خالص و شنتی: سیاهدانه (1:1) به ترتیب با میانگین 19/9 و 16/1 گرم بر کیلوگرم حاصل شد. در گیاه سیاهدانه اگر که کشت خالص نسبت به آراشیه‌ای کشت مخاطرات در ناحیه‌های اساس پیشتری بود اما در شرایط نش تیمار شنتی بیشتری ایجاد شد. تیمارهای کشت خالص نسبت به تیمارهای کشت مخاطرات دارای اساس پیشتری بود، اما تحت شرایط نش، آراشیه‌ای کشت مذکور در مقایسه با کشت خالص بدون نش از اساس پیشتری بروخوردار بودند. در کیفی سیاهدانه با افزایش نش تیمار آراشیه‌ای مکمل در مقایسه با کشت خالص بدون نش از اکثری به کیلوگرم مشاهده شد. پروتئین کیفی سیاهدانه نیز افزایش کشت خالص نسبت به تیمارهای کشت مخاطرات دارای اساس پیشتری بود که تحت تأثیر تنش رطوبتی قرار گرفته بودند. این میزان با پیشنهاد سیاهدانه از سوی انجیلیکی که گیاه شنتی و سیاهدانه از پارسی افزایش یافته است و این روند در تیمار نش شدید به صورت افزایش اساس مشهود است (شکل 10). از طرفی در گیاه سیاهدانه شدت بیشتر نش خشکی اثر انگوری افزایش اختلاف اساس کشت خالص با تیمارهای کشت مخاطرات شده است. این موضوع می‌تواند منجر به تثبیت‌کردن گیاهان از نش و تنش کشت مکمل در تعداد نش را نشان دهد (شکل (b)).
منابع:

بهارلوئی، س. (1392) اثر رقابت گیاهی بر نیاز تینوزون کشت مخلوط نخودفرنگی و کلزا، پایان‌نامه کارشناسی ارشد آگراکوآکولوژی، دانشگاه شهیدرود، ایران.

ترحیمی، ق.، لاهوتی، م. و عباسی، ف. (1389) بررسی آرزآی ناشی از نشان شکرک بر روی تغییرات قند محلول میزان کلرفل و یکی از آنها ناشی از آواره آدانزدان، 3-7-1.

حسنزاده اولی، ف. کوچکی، ع. خواعی، ج. و تصیری، م. (1389) اثر تراکم بر بیش از صخیعیات زراعی و عملکرد مزه کشت در دانه پلوهای زراعی ایران، 7: (Trifolium repens L.), و شی‌دير ایرانی (Satureja hortensis L.).

http://drought.iranhydro.net/

جیدری، م. و رضایی‌فرش، ع. (1390) اثر نشان شکرک و کود گیای بر عملکرد دانه، کلرفیل و غلظت عناصر مندید در گیاه دارویی (Nigella sativa L.), مجله تولید و فراوری محصولات زراعی و باغی، 1: 96-101.

روستایی، م. (1392) تاثیر کاربرد جدایگانه و تلفیقی کودهای شیمیایی و مرغی بر جنبه‌های مختلف تولید شیبیلیه و سبوده‌انه در کشت مخلوط، پایان‌نامه کارشناسی ارشد آگراکوآکولوژی، دانشگاه شهیدرود، ایران.

شرکت مدیریت منابع آب ایران (1394) سامانه خشکسالی‌های وابستگی ایران، Drought in Iran.htm

غلیزاده، ر. (1387) رابطه آب و خاک، انتشارات آستان قدس رضوی، مشهد.

مظاهری، د. (1377) زراعت محلول. انتشارات دانشگاه تهران، چاپ دوم.

موحید، دنیزی، م. مدرس نامی، س. ع. ای. سروش‌زاده، ع. و جلالی، م. (1383) تغییرات میزان پروپن، فنده محلول کل، کلرفیل و فلورسانس کلورفیل در ارکام گل‌گونگ بانی ریز تحت نشان شکرک و محلول پاشی روی و منگنز، پایان 9:109-13-96.

مرهاشی، س. م. کوچکی، ع. پارسا. م. و تصیری، م. (1389) بررسی مریت کشت مخلوط زینی و شبی‌های سطح مختلف کود دامی و آراشی کاشت. مجله پلوهای زراعی، 7: 269-379.


