واکنش‌های رشد و فتوستزی داودی به محلول‌پاشی سیلیکات سدیم و کلسیم

هادی حاجی‌پور و زهرا جیارزاده
گروه علوم باغبانی، دانشگاه شیرازی، دانشگاه ارومیه (ارویه)

۱۳۹۴/۱۱/۱۴، تاریخ پذیرش نهایی: ۱۳۹۴/۱۲/۳۱

چکیده:
سیلیکون یک عنصر شیمیایی است که ایا در صورت البانه یا در طبیعت، در بافت‌های گیاهی و در کبدی بیماری‌های گیاهی از جمله گیاهان زینی دارد. هدف از این پژوهش بررسی تأثیر محلول پاشی سیلیکون بر وزن گیاه، رشد و فتوستزی داودی بود. این پژوهش به صورت فاکتوریل در قالب طرح کلیه ۱۲ صدیقه انجام شده است. نتایج نشان داد سیلیکات سدیم و کلسیم باعث افزایش وزن گیاه و افزایش سایر شاخص‌های اندام‌های گیاهی شده است. در سیلیکون در این شاخص‌ها ممکن است به دلیل اثر بر سیستم باربریسم و فتوستزی گیاه نظیر اثر بر غلظت آنی و روپیکس، افزایش انتقال مواد فتوستزی از منبع به طرف مخزن، افزایش کارایی فتوستزی، تغییر توزیع مواد فتوستزی، کاهش مواد اسیدانی، افزایش ذخیره کروی‌هدرات و

کلمات کلیدی: داودی، کورکیت، پرفیت، کلروفیل، فتوستز، سطح برق

مقدمه:
داودی یا نام علمی (Dendranthema ×grandiflorum) در گیاهان به سه گونه Si (جذب Epstein, 1999) محلول Si(OH)۴ میلی مولار باقی می‌ماند. (عامل دیگر (مهاجمی، ۱۹۹۴) محلول سیلیکون در خاک pH محیط کشت است. سیلیکون به ویژه در کشت گیاهان غلظت سیلیکون ۱۰ تا ۲۰درصد وزن خشک گیاه است. غلظت سیلیکون در بافت‌های گیاهی در مقایسه با دیگر جلب ها، به طور کلی لیاهم‌ها سیلیکون به ترتیب: (۱۰ تا ۱۵ درصد) دارند. (Hodson et al., 2005)

عنوان یک از گیاهان مهم به‌نرم‌کننده و می‌باشد (Asteraceae). موفقیت در کشت این گیاه به علت نمونه‌گیری از رنگ‌ها و شکل‌های مختلف کل آذین خداوند (Barbosa, 2003). داودی جزو مهم‌ترین گیاه‌های به‌نرم‌کننده است. این گیاه جزو یک از پره فلوش‌ترین گیاه‌های بری‌سنی است. این گیاه جزو گیاهان فضای سبز در سراسر جهان است (Song et al., 2011).

سیلیکون یک عنصر شیمیایی است که کاربرد آن به طور کلی است. گیاهان به دیاره‌تری مورد مطالعه قرار می‌گیرند. خاک به طور متوسط شامل ۳۱ درصد سیلیکون به شکل سیلیکات (SiO۲) است.
خواص فیزیولوژیکی مفید سیلیکون در محصولات باگی، مصرف آن روز به روز در حال افزایش است (Frantz et al., 2008). سیلیکون به عنوان یک عنصر مفید در اثبات مثبت مختلف شامل کاهش اثر نشرهای زیستی و غیر زیستی، کاهش تبخیر، تعرق و افزایش فاکتور های نظیر کارایی فتوسنتزی، قطع سه سطح برنک و قطر کل دارد (2005). سیلیکون باعث افزایش ۵۲ درصدی سطح برنک های اطلسی ایرانی در مقایسه با شاهرود شد (بیات و همکاران، 1391) در پژوهشی تیمار دارودی با سیلیکون باعث افزایش وزن تر و خشک بزگ‌ها نسبت به گیاهان که سیلیکون در یک‌ریزه بودند، شد (Carvalho-Zanao et al., 2012). شاخص کارولفیلی دستگاه کارولفیل سنج مدل-200 فتوسنتز، سیلیکون باعث افزایش فاکتور های نظیر کارایی فتوسنتز ۲ و فتوسنتز اطلسی ایرانی شد (بیات و همکاران، 1391) با توجه به موارد فوق، ابن پژوهش با هدف بررسی تأثیر سیلیکات‌های سدیم و سلزنیک بر خاکی و یوزیک‌های رشیدی و فتوسنتزی دارودی در محیط کشت کمک کرکوپیتی-بریلتن انجام شد. (Korndorfer and Lepsch, 2001). فتوسنتزی می‌باشد، سیلیکون باعث افزایش های سیلیکات‌های سدیم و کلسیم، کمک بهبود در تلخ‌سازی و خاکی کرکوپیتی-بریلتن انجام شد.

مدّد و روش‌ها:
این پژوهش به صورت فاکتوریل بر پایه طرح کاملاً تصادفی با دو فاکتور نوع سیلیکات‌ها و دو صورت (سیلیکات‌های سدیم و کلسیم) و غلظت سیلیکات‌ها در ۵ سطح (۰، ۵۰، ۱۰۰، ۱۵۰ و ۲۰۰ میلی‌گرم در لیتر) در محیط کشت کمک کرکوپیتی-بریلتن (۱:۱ V/V) در ۲۰ کوره و ۲ مشاهده انجام شد. قلمه‌های ریشه در شرایط مدارپذیر حدود ۱۵ سانتی‌متر و ارتفاع ۱۲ سانتی‌متر منتقل شدند. گیاهان در گلخانه تحت شرایط دما باید حدود ۱۵/۱۴ سانتی‌متر گراد (شب‌روز) باشد. تعداد نور (۴۰۰۰–۳۰۰۰ ولسک و رطوبت نسبی -۵۰ درصد) قرار گرفتند. محلول بیشین سلزیکا سدیم و کلسیم به صورت

نتایج و بحث:
سطح برنک: نتایج مقایسه یکنواختی (۱۸) نشان می‌دهد که بیشترین سطح برنک (۲۳۵/۳۵ میلیمتر مربع) در محیط

www.SID.ir
کشت کوکوپیت- پرلیت در نیمیار ۱۵۰ میلی گرم در لیتر سیلیکات کلسیم پایین‌تر دارد. در نیمیار سیلیکات کلسیم و سدیم با افزایش غلظت سیلیکون تنها ۱۵۰ میلی گرم در لیتر سطح برگ افزایش یافته است. ولی در ۲۰۰ میلی گرم در لیتر سیلیکون، مقداری کاهش در سطح برگ نسبت به نیمیار در سطح سیلیکون مشاهده شده که این کاهش در غلظت ۲۰۰ میلی گرم در لیتر سیلیکون معنی‌دار نبود. سیلیکون در متقابل‌السیلولز دیواره سلولی و در گسترش و برگ شدن سلولی نقش دارد. همچنین با افزایش کشیدگی سلول‌های برگ و افزایش انتقال آب به سلول‌های برگ، زمینه را برای گسترش سطح برگ فراهم می‌کند. بنابراین در افزایش کارایی صرف آب و بهبود محیطی توسط نسبت برگ به‌اشت افزایش فشار ترورسانت و افزایش اندازه برگ می‌شود (فاطمی و همکاران، ۱۳۸۸). نتایج این برسی در افزایش سطح برگ با Weerahewa (۲۰۰۹) در رز. یاقومعي و همکاران (۱۳۹۱) در ایالتی ایرانی مطابقت داشت.

تعداد برگ: مقایسه بیانی‌های مربوط به اثرات متقابل نوع و غلظت سیلیکات (شکل ۱۶) نشان می‌دهد که بیشترین تعداد برگ‌ها در محیط کشت کوکوپیت- پرلیت در نیمیار ۱۰۰ میلی گرم در لیتر سیلیکات کلسیم مشاهده شد. با افزایش غلظت سیلیکات سدیم تنها ۲۰۰ میلی گرم در لیتر، تعداد برگ‌ها کاهش می‌باید، ولی این تعداد نسبت به سطح ۵۰ میلی گرم در لیتر و
در لیتر مقدار جزئی کاهش وزن تر برگ دیده شد. در مبنای کشت گیاهی از نظر کاهش وزن تر برگ، (Janislampi, 2012) با این حال این امکان وجود دارد که رسوب سیلیکون در کمکهای برگ، باعث زیادی از بیانیه از حجم بزرگتر ایجاد شود و در نتیجه دمای برگ کم شود (2012).\(\text{Janislampi, 2012}\)

وزن تر و خشک برگ: نتایج مقایسه میانگین های مربوط به کاربرد سیلیکات‌های کلسیم و سدیم (شکل 2b) نشان می‌دهد که در میانه کشت گیاهی از نظر کاهش وزن تر برگ، (Janislampi, 2012) با این حال این امکان وجود دارد که رسوب سیلیکون در کمکهای برگ، باعث زیادی از بیانیه از حجم بزرگتر ایجاد شود و در نتیجه دمای برگ کم شود (2012).\(\text{Janislampi, 2012}\)
شاخص کلروفیل (SPAD): مقایسه میانگین‌های مربوط به اثرات منفی نوع و غلظت سیلیکات (شکل b) در نام‌های می‌رود که کاربرد سیلیکون باعث افزایش شاخص کلروفیل می‌شود. به طوری که بیشترین شاخص کلروفیل در تیمار 100 میلی گرم در لیتر سیلیکات کلسیم (SPAD 13/13) مشاهده شد. از انجا که سیلیکون باعث افزایش تأمین مواد غذایی از جمله مینرال و عناصر ضروری و تمایل برای صعود و کم مقدار می‌شود (Abdalla, 2010) و با توجه به اینکه مینرال سخت کلروفیل نقش اساسی دارد، می‌توان افزایش کلروفیل را در پرکهای گیاهان تحت تاثیر سیلیکون انتقال داشت. سیلیکون سطح نیتروژن برگ را افزایش داده (Savvas et al., 2002) (شکل a). در نتیجه باعث افزایش کلروفیل می‌شود. سیلیکون باعث افزایش کارایی فتوسنتز و کاهش استرس نازک (Watanabe et al., 2002) می‌شود. پژوهش حاضر، نتایج پژوهش سیلیکون باعث افزایش شاخص کلروفیل در آهور می‌شود را تایید می کند. مشابه این نتایج، در پژوهش دیگری (Sivanesan و همکاران 2012) گزارش کرده که کاربرد Si باعث افزایش شاخص کلروفیل در داوودی شده است.

شاخص بکر: نتایج مقایسه میانگین‌های مربوط به کاربرد سیلیکات نشان می‌دهد که بیشترین و کمترین میزان فتوسنتر خاصیت گیاهان دارویی بررسی شده بود در تیمارهای 100 میلی گرم در لیتر سیلیکات کلسیم و شاهد سیلیکات سدیم، 150 میلی گرم در لیتر سیلیکات کلسیم و شاهد سیلیکات سدیم (شکل b).

تشکیل برگ‌ها: در این پژوهش بیشترین و کمترین میزان هدایت روزانه ای در این پژوهش بیشترین و کمترین میزان هدایت روزانه ای در این پژوهش بیشترین و کمترین میزان

فلورسنت خاصل: تأثیر جنگل‌های باریکه بر کاربرد سیلیکات نشان می‌دهد که بیشترین و کمترین میزان فتوسنتر خاصیت گیاهان دارویی بررسی شده بود در تیمارهای 100 میلی گرم در لیتر سیلیکات کلسیم و شاهد سیلیکات سدیم، 150 میلی گرم در لیتر سیلیکات کلسیم و شاهد سیلیکات سدیم (شکل b).
شکل ۴- اثر غلظت سیلیکات بر میزان کلروفیل a (۴) و کلروفیل b (۵) داروی در محیط کشت کوکوپیت-پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنی‌دار در آزمون دانک در سطح ۱% است.

شکل ۵- اثرات متقابل نوع و غلظت سیلیکات بر فتوسترز خالص (۴)، بر هدایت روزنه‌ای (۵) و بر دی اکسید کربن تابدلی (۶) در محیط کشت کوکوپیت-پرلیت. حروف غیر مشابه نشان دهنده وجود اختلاف معنی‌دار در آزمون دانک در سطح ۱% است.

تعریق: نمودار مقایسه میانگین‌ها (شکل ۴) حاکی از آن است که غلظت‌های ۱۰۰ و ۱۵۰ میلی‌گرم در لیتر سیلیکات کلسیم و ۵۰ و ۱۰۰ میلی‌گرم در لیتر سیلیکات سدیم نسبت به شاهد معنی‌دار نیستند. فقط غلظت ۱۰۰ میلی‌گرم در لیتر سیلیکات سدیم نسبت به شاهد معنی‌دار بود. نتایج تیمار سیلیکات در (شکل ۴) و احتمالاً جذب بیشتر سیلیکات سدیم از طریق سامان‌های غشایی باشد.
نتیجه‌گیری کلی:
نتایج این بررسی نشان داد که تیمارهای 100 و 150 میلی‌گرم در میان سیلیکات‌های بیضی‌نواز اثر را در بهبود شاخص‌های مورد بررسی داشتند. همچنین برای اثر شاخص‌های اندوزه‌گیری و سه شاهد، سیلیکات‌های بیستی نسبت به سیلیکات‌های کلیسی برتری داشتند. بنابراین نسبت به سیلیکات‌های کلیسی و در نتیجه وابسته‌پذیری پتانسیل بوده در غشاه سولو، احتمالاً جذب بیشتر سیلیکات‌های اسید گرام‌پوری و مولولوژیکی را بهبود بخشیده‌اند. سیلیکات یک عنصر ضروری است که برای رشد گیاه نقش مهمی بازی می‌کند. بهبود فاکتور‌های گیاهی و کیفیت یا مربوط به اثر منفی سیلیکات است یا به طور غیر مستقیم ناشی از اثرات محافظت سیلیکات در بر اثر سیلیکات روزهای بیزی و غیر وزنی است. این محققان برای فیزیولوژی و فناوری‌های آب و دیگر، به‌طور مستقیم و غیر مستقیم در سوخته و ساز سلولی دارد. این محققان برای شاخص‌های فیتوستروژی و گیاه به دلیل روت‌های تیمارهای 100 و 150 میلی‌گرم؛ افزایش احتمالاً بیشتر این کلیسی، برای شاخص‌های فیتوستروژی و در نهایت عملکرد بیشتر می‌زیند. هدایت روزهای به شرایط آب و هوایی نیز بهبودی است. که این عملکرد به دلیل بیشتر تعداد شاخص‌های بیزی و بهبود آنها بازتر شود و به دنبال آن باعث افزایش هدایت روزهای می‌شود.

منابع:

(Perira et al., 2005)

Kamenidou, S., Cavins, T. J. and Marek, S. 2008. Silicon supplements affect horticultural traits of greenhouse produced creeping bentgrass and zoysiagrass. In: Conference Silicon in Agriculture, Fort Lauderdale, Florida, USA.

