بررسی برخی پاسخ‌های فیزیولوژیکی و بیوشیمیایی گیاه ترخون (Artemisia dracunculus) به وسیله کم‌آبی

کیوان آقایی*، محبوبه برزیلی، و یهپ جعفریان و فرید شکاری

گروه زیست‌شناسی، دانشکده علوم، دانشگاه زنجان، گروه زیست‌شناسی، دانشکده علوم، دانشگاه زنجان

(تاریخ دریافت: 04/11/1394، تاریخ پذیرش نهایی: 18/06/1394)

چکیده:
کم‌آبی از مهم‌ترین عوامل خطرنگ زندگی محیطی است که زیست‌شناسی و بیوشیمیایی مطالعه می‌کند. گیاهان محصول می‌شود که اثر نامطلوبی بر رشد و تولید گیاهان دارویی نیز دارد. در این پژوهش به منظور بررسی تأثیر کم‌آبی بر گیاه ترخون، آزمایشی در قالب طرح کلسترولی تهیه شد. در این مطالعه، تأثیر 4 درصد صرب‌سازی (دسی بی‌سی‌سی‌آسی) و ۰ از درصد صرب‌سازی در شرایط مفهومی و ۰ درصد صرب‌سازی در شرایط عادی بر روی تولید گیاهان ترخون باعث شد. نتایج نشان داد که کم‌آبی تأثیر معنی‌داری بر شیوع فیکتیوی و میانگین شاید و زنگه داشت. در حالی که مقدار این گیاهان در شرایط عادی در مقایسه با شرایط معنی‌داری تأثیر بود. بررسی نیاز به گیاهان بیوشیمیایی نیز نشان داد که میزان پروتئین، مقدار محیطی آنزیم پراکسیداز در گیاهان تحت تنش آفایی متوقف. در حالی که مقدار تولید فعالیت آنزیم کاتالاز، میزان رنگ‌یاری فلوتوسی (کارولفیل ۶ و کارولفیل ۰) و مقدار پروتئین محیطی کاهش یافت. بهترین کل‌گزارش از گیاهان در ضریب افزایش کم‌آبی و ۰ درصد صرب‌سازی تشخیص داد. کم‌آبی به تغییرات مقدار پروتئین و قند‌های محلول و میزان محیطی آنزیم پراکسیداز در گیاهان تحت تنش تأثیر بود. در سایر گیاهان پروتئین کاهش یافت. بهترین کل‌گزارش از گیاهان در ضریب افزایش کم‌آبی و ۰ درصد صرب‌سازی تشخیص داد.

کلمات کلیدی: آنزیم‌های آنتی‌اکسیدان، پروتئین، ترمیم آبیاری، قند‌های محلول

مقدمه:
ترخون (Artemisia dracunculus) گیاه غله‌ای معطر، جنس‌السابقه مسقیم، مشکب و ریزوم دار است که دارای مصروف خوراکی و دارویی می‌باشد (Bown، 1995). دارای اپلیکاسیون در زندگی و جنوب سیبیا، آسیای مرکزی و چین و فناوری آبزی که در اکثر کشورها کشت می‌شود و معمولاً در نواحی مرطوب و در سواحل رودخانه‌ها می‌روید (مدی‌دوی، 1379). ترخون برای

نویسندگان: نوشته پست الکترونیکی: keyvanaghaei@znu.ac.ir

Downloaded from jispp.iut.ac.ir at 15:06 IRDT on Monday May 15th 2017
مواد و روش‌ها:

به منظور ارزیابی اثر کربن دیوید بر روی سطوح فیزیولوژیک و برخی هم‌کاری‌های آزمایشگاهی در اکتاف رشد به صورت گلداشتی در قالب طرح کامل تصادفی به سه تکرار انگیزه شد. تیمارهای آبیاری جهت انتخاب بردن از: اسید TF با ترکیبی از: TF (آبیاری به میزان ۹۰ درصد طرفت زراعی)، و TF (آبیاری به میزان ۴۰ درصد طرفت زراعی). به منظور اعمال شکستگی روش وزن کنید گلداشتی (گلداشتی یافت‌بندی) به ارتفاع ۱۸ و قطر ۲۰ سانتی‌متر استفاده شد. به این ترتیب که این کمی از گلداشتی که از خاک مورد آزمایش بر شده، بود، توزین شد. سپس گلداشتی آب اشباع گردید و برای جلوگیری از تبخیر، سطح گلداشتی توسط یک پلاستیک پوشیده شد. با خروج آب، نقشه وزن گلداشتی به طور مرتکب کم شد تا به هر نقطه که وزن آن نبود، سپس یک تفاوت وزن‌گیری وزن خاک شکستگی محاسبه شد که تا به پایان گلداشتی به شکستگی مضاعف آب وارد برای رشیدن خاک گلداشتی به حذف طرفت زراعی ۰/۹۰ و ۰/۴ درصد طرفت زراعی مشخص شد و برای انتخاب گلداشتی روزانه وزن می‌شود و مقادير آب لازم برای رشد در هر گلداشتی به گلداشتی یافت‌بندی و حذف طرفت زراعی مورد استفاده قرار گرفت. گلداشتی و در این میان کم‌درجه خاک گلداشتی به این ترتیب جدولی، و برای ریزش، گلداشتی به ایجاد اثرات افزایش قدرت گرید. انتخاب شکستگی، نظیر ایکس‌مستری به وسیله تجمع نمک‌های آلی و پایش خشکی، نشان دهنده شکستگی در خاک گلداشتی به شکستگی مشخص خاک‌پوشانی زنبوری نمی‌شود. این یک سهیل به بهترین طبقه‌بندی است. (Presk, 1999). گزارش می‌شود که بیش از طبقه‌بندی مختلف خاک‌پوشانی زنبوری کاهش می‌یابد. ابتدا در هر گلداشتی به‌طور میانگین کاهش خاک‌پوشانی زنبوری به ترتیب ۸ تا ۱۸ بانک از این روی به اعمال تشخیص‌هایی که به طول بیش از ۲۵ سانتی‌متر رشد یافته، به‌طور میانگین خاک‌پوشانی زنبوری به سطح خشکی، نشان دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبود شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبود شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبود شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبود شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبود شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبod شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبod شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و نشان‌دهنده یافته، افرادی و طول با کاهش برون‌رنگ، با بهبod شکستگی در بررسی‌های صورت کاهش تخیلی. نمونه‌های سطح خشکی، نشان‌دهنده و افزایش نمک‌های آلی و

(ب) هجای چه کاری برای خودشان از نظر طراحی و غذاهای اهمیت زیادی دارد و برخورداری و در کشور ایران چکت می‌شود اما اطماع چنین در موجود آسان‌تری می‌تواند تنش خشکی و مکانسی نموده آن وجود دارد. بنابراین به منظور تعیین میزان سطح توحال این گیاه به نشانه کم‌آبی و شناسایی مکانسی‌های فیزیولوژیک و بوشی‌میانی چالش در تحمال به نشانه کم‌آبی در

عنوان امروز نشانه مهم گوشت مورد توجه بوده و موجب کاهش فشار خون نزدیک می‌شود در مزرعه برخی از بیماری‌های خونی مانند طاعون و نیز در تبسین درد دندان و بطریف کردن درخیلی از گل‌های روده ای نزدیک این گیاه استفاده شده است. اساس رخت‌تن در فعالیت مصرف بکری ویژه محصولات خاص تریپنیدی دارای فعالیت انگیز اکسیدانتی بادش (Kordal et al., 2005)
Mort, in the amount of 10 μl in a solution of 0.1 M NaOH, is measured.
The optical density at 440 nm is recorded. The absorbance at this wavelength is
then used to calculate the chlorophyll content. The equations for calculating
chlorophyll content are:

\[
\text{Chlorophyll a} = \frac{(19.3A663 - 0.86A645) \times 100}{V/100W}
\]

where:
- A663 and A645 are the absorbance values at 663 and 645 nm, respectively.
- V is the volume of the sample (ml).
- W is the weight of the dry tissue (g).

The chlorophyll content of a given tissue sample can be calculated using
these equations. The values obtained are expressed as mg of chlorophyll per
gram of dry tissue (mg g⁻¹).
تأمیل: تغییرات جذب بر زمان در طول موج 100 نانویل بر داده 120 ثانیه با استفاده از دستگاه اسکیتروفومتر قراند و دستگاه صفر. برای تغییرات جذب نیز 475 میکرولیتر پرپایه‌های یوز و 475 میکرولیتر فلز‌آمیزی پرین آماده و سپس 50 میکرولیتر از عصاره آنزیمی اضافه شده و جذب
نمونه تحت شرایط نمونه شاهد قراند شد.

اندازه‌گیری فعالیت آنزیم کاتالاز: برای سنجد فعالیت آنزیم کاتالاز صفر و دستگاه صفر شده. در این مطالعه نمونه تیمار نیز 975 میکروگرمی‌ها و پرپایه‌های یوز و سپس 50 میکرولیتر از عصاره آنزیمی اضافه شده و جذب نمونه تحت شرایط نمونه شاهد قراند شد.
سنجد فعالیت کاتالاز بر اساس کاهش جذب آپکسیژن در طول موج 400 نانویل صورت گرفت. یک واحده فعالیت آنزیمی مقدار آنزیمی است که 1 گرم پی میکرولیتر آپکسیژن را در مدت 1 دقیقه تجزیه کند.

سنجد میزان پروپتین‌های محلول: برای سنجد غلظت پروتئین بر 50 میکروگرمی‌ها و پرپایه‌های یوز و سپس 75 میکرویلیتر تیمار در طول موج 995 نانویل خوردند. غلظت پروتئین با استفاده از منحنی استاندارد آلبومین سرم گاوار محاسبه گردید. برای تغییرات معنی‌دار بردارد 0.01 گرم از بودر کومپسیونی بی‌لیپیدیو 50 میلی‌لیتر G250 را در 40 میلی‌لیتر اتانول 96 درصد حل کرده و حداکثر بعد از یک ساعت مصرف هدیه. میکرویلیتر استادیسورافینات 50 درصد به صورت تدریجی به آن اضافه شد. بعد از چند دقیقه در خورد، حجم نهایی آن به آب خطره‌ای به‌طور تدریجی به‌طور تدریجی افزایش داده شد و در مصرف به‌طور تدریجی در بالین کاهش شد.

آلترنی آماری: این آزمایش بصورت فاکتور در قالب طرح کاملاً تصادفی با سه تکرار در هر تیمار انجام شد و داده‌ها

تصویر کاردب گیاهی جلد 1، شماره 1396، صفحه 18
جدول 1- تناوب تجزیه ورایانس (میانگین مربعات) تیمارهای مختلف آب بر پایه آبپردازه و رشد گیاه ترخون

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درصد محصول نسبی آب بر گرک (RWC)</th>
<th>سطح برگ</th>
<th>وزن خشک اندام هوازی</th>
<th>ارتفاع ساقه</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>نتایج کمیابی</th>
<th>نتایج آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۸۷۶۸۲</td>
<td>۶/۲۶۴۱۹</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
</tr>
<tr>
<td>۳/۸۷</td>
<td>۶/۲۶۴۱۹</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
</tr>
<tr>
<td>۲/۸۷۴۱۶۸</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۱/۸۷۴۱۶</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۰/۸۷۳۱۶۸</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
</tbody>
</table>

• اختلاف در سطح احتمال ۱/۰: از دسترسی نشده است.

جدول 2- اثر سطوح مختلف آبپردازه (میانگین مربعات) تیمارهای مختلف آب بر پایه آبپردازه و رشد گیاه ترخون

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درصد محصول نسبی آب بر گرک (RWC)</th>
<th>سطح برگ</th>
<th>وزن خشک اندام هوازی</th>
<th>ارتفاع ساقه</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>نتایج کمیابی</th>
<th>نتایج آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۸۷۶۸۲</td>
<td>۶/۲۶۴۱۹</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
</tr>
<tr>
<td>۳/۸۷</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۲/۸۷۴۱۶</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۱/۸۷۴۱۶</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۰/۸۷۳۱۶۸</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
</tbody>
</table>

• اختلاف در سطح احتمال ۱/۰: از دسترسی نشده است.

جدول 3- تناوب تجزیه ورایانس (میانگین مربعات) تیمارهای مختلف آب بر پایه آبپردازه و رشد گیاه ترخون

<table>
<thead>
<tr>
<th>میانگین مربعات</th>
<th>درصد محصول نسبی آب بر گرک (RWC)</th>
<th>سطح برگ</th>
<th>وزن خشک اندام هوازی</th>
<th>ارتفاع ساقه</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>نتایج کمیابی</th>
<th>نتایج آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>۴/۸۷۶۸۲</td>
<td>۶/۲۶۴۱۹</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
</tr>
<tr>
<td>۳/۸۷</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۲/۸۷۴۱۶</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۱/۸۷۴۱۶</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
<tr>
<td>۰/۸۷۳۱۶۸</td>
<td>۳/۲۷۶</td>
<td>۲/۷۵۸</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۲/۶۸۵</td>
<td>۶/۲۰۰۳</td>
<td>۶/۲۰۰۳</td>
<td></td>
</tr>
</tbody>
</table>

• اختلاف در سطح احتمال ۱/۰: از دسترسی نشده است.

تیمار ۴۰٪ ظرفیت زراعی مشاهده شد (جدول ۲).

فعالیت آنزیم پراکسیداز: نتایج به دست آمده از آنالیز تجزیه ورایانس نشان داد که تغییرات فعالیت آنزیم پراکسیداز اندام هوازی در گیاه ترخون تحت اثر سطوح مختلف آبپردازه اختلاف معناداری در سطح اطمینان ۹۹ درصد نشان داد (جدول ۲). با افزایش نشان کمیاب قدرت فعالیت آنزیم پراکسیداز افزایش یافت (شکل a). میزان این صفت از ۲۰۰۰ مکرومول بر دقیقه در میلی گرم برای تیمار ۴۰ درصد ظرفیت مکرومول بر دقیقه در میلی گرم برای تیمار ۱۵ درصد ظرفیت ترکیه‌ای قابل توجه بودند (شکل b).
20 فشآی‌دندان و کاربرد گیاه‌پزشی جلد 6 شماره 1396

شکل 1- مقایسه بافت‌های سطوح متفاوت آبیاری در کاهش بروز ریختگی بازی، هم‌اکنون، تحقیقات کاهش بروز ریختگی بازی، هم‌اکنون، تحقیقات

شکل 2- مقایسه بافت‌های سطوح متفاوت آبیاری در کاهش بروز ریختگی بازی، هم‌اکنون، تحقیقات

داد که مقادیر پروپونین اندام هواپیما در گیاه ترخون در سطوح مختلف آبیاری اختلاف معنی‌داری در سطح اطبایان 99 درصد دارد (جدول 3). با افزایش نشان داد که مقادیر پروپونین افزایش یافته به طوری‌که تیمار شاهد کمترین مقدار و تیمار 40 درصد صد طرفیت زراعی بیشترین مقدار پروپونین را داشت (شکل a).

مقدار قند‌های محلول: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که مقادیر قند‌های محلول اندام هواپیما در گیاه ترخون تحت اثر سطوح مختلف آبیاری در سطح یک درصد معنی‌دار بود (جدول 4). با افزایش نشان داد که مقادیر کمترین مقدار پروپونین 90 درصد طرفیت زراعی با بیشترین مقدار و تیمار 40 درصد صد درصد طرفیت زراعی

با کمترین مقدار هم‌اکنون. میزان این صفت از 0.67 مایلی گرم و زن تر برش شرایط آبیاری کامل تا 0.07 مایلی گرم بر گرم وزن تر برش شرایط آبیاری 40 درصد طرفیت

در میزان آبیاری

www.SID.ir
پرسی برخی پاسخ‌های فیزیولوژیکی و پیش‌بینی‌گری گیاه ترخون.

شکل 3- مقایسه میانگین سطح متفاوت آبیاری بر مقدار کلروفیل (a) و کلروفیل (b) گیاه ترخون، حروف مشابه نشان‌دهنده عدم متندازی در سطح یک درصد.

شکل 4- مقایسه میانگین سطح مختلف آبیاری بر مقدار کاروتئنیدها (a) و مقدار پروتئین محلول (b) گیاه ترخون، حروف مشابه نشان‌دهنده عدم متندازی در سطح یک درصد.

زمان کلروفیل (b) نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که مقدار کلروفیل (b) در گیاه ترخون تحت اثر سطح مختلف آبیاری در سطح یک درصد متنداز می‌باشد (جدول 3). با افزایش نشان کم‌آبی مقدار کلروفیل (b) کاهش یافته به طوریکه در تیمار شاهد (40 درصد ظرفیت زراعی) بیشترین مقدار و درتیمار 40 درصد (40 درصد ظرفیت زراعی) کمترین مقدار بود (شکل 4).

میزان کاروتئنیدها: نتایج به دست آمده از آنالیز تجزیه واریانس نشان داد که مقدار کاروتئنیدها در گیاه ترخون تحت اثر سطح مختلف آبیاری در سطح اطمینان 99 درصد متنداز می‌باشد (جدول 3). با افزایش نشان کم‌آبی مقدار کاروتئنیدها کاهش یافته به طوریکه که تیمار شاهد

بحث:

بر اساس نتایج حاصل از مطالعه حاضر، پارامترهای رشد شامل وزن خشک، ارتفاع، محتوای نسبی آب برک و شاخی سطح
برگ با افزایش نشک می‌آید که کاهش معنی‌داری نشان داده نشان داده

پرچسب‌های مرتبط:
کتانولیپس، دیواریتاتوراکسه، بایپاس

ارتباط مستقیمی با افزایش نشک نشان داده نشان داده

تعدادی از مطالعه حکایات از ارتباط مستقیم بین افزایش نشک کم آی و تولید پروپونیل داشت. به طوری که با افزایش سطح نشک یک میزان پروپونیل برگ تا پایه نشک یافت. اسپایبن پروپونیل بکی از مهم‌ترین اسپوشیت‌های آبی است که در گیاهان در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری می‌تواند در خانه‌های محیطی که دارای نیازهای مصرفی می‌باشد که در واکنش به عوامل ناسازگاری مجامعی تجمع می‌یابد. پروپونیل همچنین به عنوان بن بی‌محیط این امری M. (Herralde et al., 1998).
علت افزایش قند‌های محلول را در هنگام نشته‌کردن کم آبی به
تخریب نشته‌کردن توسط کن. یکی از راه‌های رهگیری آب‌اکسیژن
قند‌های ساده در شرایط نشته‌خرس و کم آبی و سایر نشته‌ها
می‌باشد که در این باره‌ها فوتون‌های قندی کاملاً پایه
تجهیزه طبیعی یا فیلوکنیدی یا انتقال این قند آب به گره‌های
می‌باشد (Duran, 1984). هم‌سود تولید قند‌های محلول
و پرولین در شرایط تنش توسط برخی محققین به این رسیده
است (Baghizadeh et al., 2007). یکی از دلایلی که برای
ایفای نقش پاتولوژی فیبر در نشته‌خرس در نشته‌خرس ذکر شده است
است که، اگر چه، در فیبر اکسیژن، حاوی آب غنی و
پرولینی می‌باشد و با پایین آمدن گاز اکسیژن در
طی بعدی گازهای آب‌آمیخته در نشته‌خرس، آماده‌گی بی‌سیخی
تواری گازهای آب‌آمیخته و پرولین را از کاملاً که اکسیژن و
پرولین را می‌کنند و با یکدیگر، در طی پسرهایی، حفظ
شور، در این راه‌های کن‌ها با پرولینی و غش روی
هیدرولیزی کنیش در مهند و از تغییر شکل آنها جلوگیری
می‌نماید. (Leopold et al., 1994). همچنین برخی از
کارشناسان یا کم‌کارها به نشته‌خرس پاتولوژی فیبری
مانند پاتولوژی کن‌های زیراوج‌های راپیکس و سبب اکسیژن
رشته‌خرس را فوتون‌های می‌شود. با این حال، محققین نقش
افراشی در ترکیبات فیبری اثر آن بر نظارتی نسبت
(Ashraf and Mehmood, 1997).

کارولینا مولکول‌های ضروری هستند که ستون دریافت
انرژی صورت‌گیریده در سیستم‌های فوتون‌های می‌باشد.
تنگ‌های در نشته‌خرس می‌باشد (Tanaka and Takana, 2006)
و غلظت کارولین‌های a و b به عنوان یک واکنش کوتاه مدت به
نشته، بی‌قوتی ترش و به تون حفظ قدرت منبع
در شرایط نشته‌خرس اکسیژن سرفرار قرار می‌گیرد
(Ahmadi and Cieoce mardeh, 2004).

کارایی کارولین‌های دارای حفاظت از فوتون‌های رنگبردار
فوتون‌های مورد بررسی قرار گرفته است. کارولین‌های
دارای انرژی زیادی طول موج‌های کوتاه را گرفته و اکسیژن به
سه تایی تبدیل کنند و با گرفتن رادیکال‌های اکسیژن تولد
می‌نمایند:

ممنای:
امیدیگی، ر. (1379) رهافت‌های تولید و فرآوری گیاهان دارویی. چاپ دوم. طراحان نشر، جلد اول 286 صفحه.

