کارگاه های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین بررسی مقایسه انواع (مقدماتی)

کارگاه آنلاین پروپوزال بررسی نویسی و پایان نامه نویسی

کارگاه آنلاین آشنایی با پایگاه های اطلاعات علمی بین المللی و ترفندهای جستجو
مقاله علمی - پژوهشی:

تعیین شرایط بهینه پیش کشتار گیور معمولی با استفاده از شاخص TBA و روش سطح (RSM)

غلامرضا بختیاری، ابراهیم علیزاده دوغیکلایی، محسن شهریاری مقدم، محسن صمیمی

*mohtesm.shahriari@uo.ac.ir

1-گروه شیلات، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران
2-گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران
3-گروه شیمی، دانشگاه ازربی، دانشگاه صنعتی کرمانشاه، کرمانشاه، ایران

تاریخ پذیرش: تیر ۱۳۹۹

چکیده

کیفیت گیوته‌ها تحت تاثیر عوامل متعددی از جمله روش کشتار و همچنین شرایط پروش قبل از کشتار می‌باشد. هدف این تحقیق بررسی تاثیر شاخص‌های زمان قطع غذا (X_t)، تراکم (X_n) و وزن ماهی (X_w) به عوامل عوامل تاثیر گذار قبل از کشتار بر TBA میزان تیلگ جیور معمولی (Cyprinus carpio) بهره‌مندی و روش سطح پاسخ و مدل باکس-بنکن و بهینه‌سازی عددها مدل تیاکن و وزن پس بوده است. ماهی جیور معمولی پس از سازگاری تحت تبابرایی قطع غذا، تراکم و وزن پس TBA گزارش گردیده است. مدل درجه دوم در شرایط آزمایشی با سطح پایین (X_i) و Sطح بالای (X_w) از 4 0 و مدل در روش قطع غذا (X_t) دو بیماری TBA در شرایط پیشنهادی با مدل 482/800 (میلی گرم مالون دی آنالیز کرده‌گستش ماهی) تعبیه شد که پس از گذاره‌سنجی عوامل در شرایط پیشنهادی برابر 1/07/800 اندازه‌گیری گردید. این تفاوت و خطای ناچیز میزان TBA بین مدل و شرایط عملي نشان از صحت و اعتبار مدل پیشنهادی و نتایج بدست آمده دارد. لذا، نتایج این تحقیق نشان داد که استفاده از روش سطح پاسخ برای بهینه‌سازی شرایط پیش از کشتار گیور معمولی مناسب بوده است و نیاز مدل درجه دوم می‌تواند برای پیش‌بینی رفتار پاسخ در شرایط پیش کشتار متفاوت استفاده گردد.

لغات کلیدی: جیور معمولی، کشتار، قطع غذا، مدل باکس-بنکن

نویسندگان مستقل

www.SID.ir
مقدمه
استفاده از ماهی و سایر آبزیان به عنوان یکی از منابع ارزشمند غذایی از نظر کربنات و دی‌آزیت بشر قرار گرفته است. همچنین با ارائه سطح دانش بنیادی و اگاهی از اهمیت و نقش مداد پروتئینی در برنامه غذایی و نیاز افراد جمعیتی از سوی دیگر، میزان تناها برای مصرف آنیژی تکه از موارد ابتیالی برای تغذیه مصرف می‌گردد. تاکنون مطالعات

تعین شرایط بهینه پیش کشتار کور....

بختیاری و همکاران

مختلفی در زمینه تاثیر روش‌های مختلف کشتار از قبیل خهفه دندان از آب، روش‌های اکتریکی، قطع پایه ایشتی و پی‌زی و روش‌های فیزیکی را نشان می‌دهد (Concollato et al., 2016; Zhang et al., 2017; Baldi et al., 2018)

مانند جاتونی خشکی ارتباط نگاشتگی میان انیژی و چسب کشتار و کیفیت کبد محصولات تولیدی از ماهی صرب و جغرافیا و زمان اندازه‌گیری افزایش می‌یابد. (Duran et al., 2008) از قبیل مدت درنگ خانه ماهی و تکرار ماهی پروپری و باعث تغییرات همگن در ماهی، کیفیت همگن و زمان اندازه‌گیری افزایش می‌یابد کشتار تاثیرگذار است. (Castro et al., 2002; Baldi et al., 2002; Robb et al., 2018)

وکشت ماهی در مقایسه با گوشته مرغ و گوشت قرمز بسیار سفارش‌برتر و حاوی مقادیر زیادی اسیدهای آمینه آزاد و بازه‌انه‌تر می‌باشد. برای اطمینان از این نتیجه، حذف کیفیت ماهی تازه، یکی از سعلای مهم مورد نظر منصفه مصرف کندان می‌باشد (چراغی و همکاران، 1397). بنابراین، حذف کیفیت محصول تولیدی و زمان اندازه‌گیری آن بسیار مهم است. بنابراین، انجام تکنیک‌های مناسب مثل ادرارهای (Aubourg et al., 2004; Aubourg et al., 2005) برای بدیل خلا و انمسف تغییرات (Savvaidis et al.) UV استفاده از مراکز میکروبی مثل استیسماتهای (Al-Dagal and Buzarza, 1999) و مراکز (Manju et al., 2007; Sallam, 2007) استفاده می‌تواند یکی از مسایل مهم مورد توجه ماهی و مصرف کندان باشد. (Kayan et al., 2003; Buzarra, 1999)

وکشت ماهی از زمینه تاثیر روش‌های مختلف کشتار از قبیل خهفه دندان از آب، روش‌های اکتریکی، قطع پایه ایشتی و پی‌زی و روش‌های فیزیکی را نشان می‌دهد (Concollato et al., 2016; Zhang et al., 2017; Baldi et al., 2018)
استفاده شده است. از میان روش‌های مورد استفاده، روش‌های متنی با طراحی آزمایش‌های مانند روش سطح پایین با توجه به نتایج استخراج یک مدل به هدف خروجی اهمیت ویژه‌ای دارد. در این روش تحلیل آزمایش‌های طراحی شده از طریق مدل‌های با تعداد کم آزمایش‌ها انجام می‌شود (Ryan و Morgan, 2011).

با توجه به مطالعه مذكور و نیز اهمیت کیفیت مقیاس (Cyprinus carpio) به عنوان یکی از مهم‌ترین گونه‌های پرورشی در ایران، این مطالعه به هدف استفاده از نیاز و روش سطح پایین برای ایجاد اثرات هرمان وزن ماهیان، مدت زمان قطع غذا و تراکم ماهیان پرورشی بر کیفیت فیله کیور معمولی کشتار شده به روش فنی شدن خارج از آنجا گرفت.

مواد و روش‌گار

طراحی مدل Box-Behnken در مطالعه حاضر، مدل طراحی آزمایش‌های جهت مشخص کردن تعداد و شرایط آزمایش‌های مورد نیاز و روش سطح پایSEX (RSM۱) جهت تحلیل شرایط Nihin عملیاتی پیش کشت کیور معمولی (Cyprinus carpio) استفاده شد. تاثیر متغیرهای اصلی عملیاتی از قبل مدت زمان قطع غذا (p) و تراکم ماهیان پرورشی (n) در جدول ۱ مشخص گردید. با استفاده از این روش ۱۲ آزمایش با دور تکرار آزمون در نقطه مرکزی برای تغییر خط انجام گرفت.

تهیه ماهی و تیمارها

با توجه به طرح آزمایش‌ها، ۱۰۰ قطعه ماهی کیور معمولی از کارگاه تکنیک و پرورش ماهیان شهرستان زهک تهیه و به ون‌های نگهداری برای آدابی شدن انتقال یافت. سپس ماهیان آدابی شده براساس جدول ۱ تیمار بنی و برداشت گردیدند. ماهیان پس از برداشت به روش خفه شدن خارج از آب کشتار و سپس فیله گردیدند. فیله‌ها در

\[
P = \beta_0 + \sum_{i=1}^{2} \beta_i X_i + \sum_{i=1}^{2} \sum_{j=i+1}^{2} \beta_{ij} X_i X_j
\]

\(^2\) Thiobarbituric acid

\(^1\) Response Surface Methodology
نتایج

Box- Behnken در تحقیق حاضر، روش طراحی آزمایشی برای بایان شرایط مطلوب سیستمی در فرآیند پیش کشتار کیوب معمولی به کمک بررسی یافته بیولوژیک پایه اندازه‌گیری میزان TBA استفاده گردید. تأثیر متغیرهای اصلی عملیاتی از قبیل تعداد ماهی (n)، وزن TBA ماهی (w) و زمان قطع گذا (t) بر میزان اندازه‌گیری شد. سطوح و مقدار متغیرها (بابا (1-0)، وسط (0) و بالا (1+)) در جدول 1 ارائه شده است.

جدول 1: سطوح و مقدار متغیرهای بیشینه شده

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>رنگ سطوح</th>
</tr>
</thead>
<tbody>
<tr>
<td>نشان</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>ماهی (گرم)</td>
<td>500 1000</td>
</tr>
<tr>
<td>زمان (تایم)</td>
<td>4 7 1</td>
</tr>
<tr>
<td>ترکیب ماهیان بروزی (تایم)</td>
<td>4 10 16</td>
</tr>
</tbody>
</table>

مقدار متغیرها در بررسی ار تعداد ماهی 4 و 16 عدد، وزن ماهی 500، 1000 و 1500 گرم و زمان قطع غذای ماهی به میزان 0.1 و 0.7 روز می‌باشد. با استفاده از روش 13 آزمایش با دو تکرار آزمون در نظر می‌گرفت. برای تعیین خط انجام گرفت. طراحی آزمایشی برای متغیرهای عملیاتی و نتایج آنها در جدول 2 ارائه شده است.

امام و همکاران

(Montgomery, 2017)

مدل تجربی در رابطه با استفاده از آزمون ANOVA با سطح معنی‌داری 0/5 بررسی شد. اهمیت آماری مدل‌ها (Fisher test) مرتبه دوم به موسسه آزمون آماری فیشر مربوط می‌کند. تأثیرگذاری هرگز مقدار F محاسبه شده (F-value) به‌طور اینکه بیشتر از جدول باشد، مقدار p-value بیشتر از نتایج X2 باشد. مقادیر F-value، مقادیر فاصله داده داده شده به عنوان رگرسیون مربوط به مجمعایت ضریب (از جمله خطی، مربع و پنجمین اعداد) با مجموعه مراحل رابطه 3 تعریف شدند. است.

\[F-value = \frac{MS_{\text{regression}}}{MS_{\text{residual}}} \]

که در آن:

\[MS_{\text{regression}} = \frac{SS_{\text{regression}}}{DF_{\text{regression}}} \]

\[MS_{\text{residual}} = \frac{SS_{\text{residual}}}{DF_{\text{residual}}} \]

در روابط مجموعه ضریب آزمایش (DF) برای با تعداد کل آزمایش‌ها مهای یک است. همچنین درجه آزادی رگرسیون برای با تعداد جملات منهای یک و درجة آزادی باقیمانده برای با مجموعه درجات آزمایش‌ها منهای درجه آزادی رگرسیون می‌باشد.

جدول 2: طراحی تجربی برای سه متغیر مستقل و پاسخ

<table>
<thead>
<tr>
<th>پاسخ</th>
<th>فاکتورهای مطالعه شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA</td>
<td>X_t X_w X_o</td>
</tr>
<tr>
<td>1/75</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1/66</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0/87</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0/95</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0/69</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1/61</td>
<td>1 0 1</td>
</tr>
</tbody>
</table>

شماره آزمایش
<table>
<thead>
<tr>
<th>شماره آزمایش</th>
<th>TBA</th>
<th>X_1</th>
<th>X_2</th>
<th>X_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/57</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1/03</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>1/02</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1/02</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1/08</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1/88</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>1/79</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>1/58</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>1/70</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>1/92</td>
<td>0</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

که رابطه به‌دست امده آن در رابطه ۶ نشان داده شده برای بررسی برای TBA یک مدل درجه دوم با استفاده از روش خطای حداکثر مربعه مورد استفاده قرار گرفت. است:

$$TBA = 1.6367 + 0.0450X_1 + 0.0050X_2 - 0.4450X_3 - 0.0308X_4^2 - 0.0058X_5^2 - 0.2753X_6^2 + 0.0100X_7 + 0.0750X_8 + 0.0800X_9$$

مقدار R^2_{adj} و R^2 از مدل ارائه شده قابل قبول بود و بهترین $98/7/71$ % بدست آمد. آنالیز واریانس (ANOVA) مدل درجه دوم در جدول ۳ را غیرشده است.

جدول ۳: تحلیل انحراف استاندارد (ANOVA) برای مدل درجه دوم (Table 3: Standard deviation analysis (ANOVA) for the quadratic model)

<table>
<thead>
<tr>
<th>منبع</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F-مقدار</th>
<th>P-مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>تغییرات</td>
<td>۶</td>
<td>۹/۷۴۲۰</td>
<td>۱/۵۸۴۶۰</td>
<td>۲/۷۱</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_2</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_3</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_4</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_5</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_6</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_7</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_8</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>X_9</td>
<td>۱</td>
<td>۱/۶۶۳۰</td>
<td>۱/۶۶۳۰</td>
<td>۰/۷۸۸۸</td>
<td>۰/۷۸۸۸</td>
</tr>
<tr>
<td>غیرشده</td>
<td>۶</td>
<td>۹/۷۴۲۰</td>
<td>۱/۵۸۴۶۰</td>
<td>۲/۷۱</td>
<td>۰/۷۸۸۸</td>
</tr>
</tbody>
</table>

159
بعنیتی و همکاران

Figure 1: Pareto effect for TBA

عینیت شرایط بهینه پیش کشتار کهور ...
بحث

استرس ایجاد شده در مراحل پیش و زمان کشت جنونان می‌تواند کیفیت گوشت را طی زمان نگهداری تحت تأثیر قرار دهد. طی فاصله کشت به دلیل تغییرات هورمونی، بیوشیمیایی و اختلالات ایجاد شده در تنظیم اسیدوزی ماهیان دیجیتال استرس بالایی می‌شود. استرس بالا منجر به افزایش فعالیت ماهیچه‌ای و تأثیر بر شروع فاصله جمجمه پیشی به pH کاهش عضلات بالاصله بعد از مرگ و کاهش میزان ذخیره ATP می‌گردد (Zampacavallo et al., 2015). بنابراین، با تعیین شرایط بهینه فاکتورهای تاثیرگذار بر یک بازخ مشخص، می‌توان ارزیابی دقیق را از میزان اثر عوامل دلخ دبدست آورد. جهت تعیین شرایط بهینه پیش از کشت ماهیان می‌توان از روش‌های مختلفی استفاده نمود. استفاده از طریق آزمایش به‌وسیله طرح فاکتوری کامل امکان‌های ریز گونه تکمیل ممکن بین فاکتورهای موجود و نیز بررسی تداخلات آنها را امکان‌پذیر می‌نماید. با این وجود به دلیل انجام تعداد بیشتر زمان‌بندی، کار بسیار زمان‌بر و پیچیده‌تر

شکل ۲: اثرات اصلی برای TBA

Figure 2: Main effects for TBA

شکل ۳: طرح بهینه سازی برای TBA

Figure 3: Optimization plan for TBA
مختبر دیگری نیز وجود دارد که در کیفیت و زمان ماندارگی ماهی‌ها تاثیر گذار است. یکی از مهم‌ترین آنها می‌توان به مدت زمان مصرف غذا از شکار آنها در گرندسی برای کشت گیاهی غذا جایگزین داتگر در می‌شود و در نتیجه ویژگی‌های تغذیه‌ای ماهی‌ها در زمان نگهداری در بخش می‌گردد (Caggiano, 2000). همچنین اثر قطع غذای پیش از شکار ماهی‌ها از آزاد تاثیر ناشی می‌شود. (Einen، 2002) و (Ginés and Thomassen, 1998) در سپاس از افزایش غذای زمان کاهش‌های ماهی‌ها را بر اساس نتایج بدست آمده اگرچه تحقیق در مورد قیمت زمان الگویی ماهی‌ها بر روی تغذیه غذای ماهی‌ها (Ginés and Thomassen, 1998) نشان داده است. ولی با افزایش تعداد ماهی‌ها باید توجه کرد که تغییر می‌گردد. نتایج این تحقیق نشان داده است که تمامی ماهی‌ها از نظر فضاهای ماهی‌ها تأثیر گذار است. (Thetmeyer et al., 1999) که جکو در مرحله پیش کشت متحمل می‌شود، در هر سه روش (پرورشی Bagni et al., 2005) قیمت تراکم ماهی‌ها و کاهش میزان اکسیژن و ماهی‌ها روند که کیفیت از آن پیشگیری می‌شود.

این نتایج در شرایط باروتی‌وارپوشی با تراکم پیشگیری نشان داده شده که کیفیت از آن پیشگیری می‌شود. (Parisi et al., 2002) که شکار و کاهش سطح فتح پیشگیری خودکشی شکار از افزایش تراکم پیشگیری ماهی‌ها است که کیفیت افزایش قابل اطمینان است. با توجه به نتایج بالا، نتایج که از این تحقیق نشان داده شده که کیفیت افزایش ماهی‌ها با تراکم پیشگیری خودکشی شکار افزایش می‌گردد. (Poli et al., 2005) بتواند در نتیجه این کاهش به تعویض میزانی و در نتیجه این کاهش به تعویض میزانی ماهی‌ها افزایش می‌پذیرد. (Müller, 2010) از این تحقیق نشان داده شده که کیفیت افزایش ماهی‌ها با تراکم پیشگیری خودکشی شکار افزایش می‌گردد. (Müller, 2010)
163

Pottinger, S.G., 2001. Femین این مطالعه نشان داد که کیفیت فیله از در اربیتاپ مستقیم با میزان خبیه فیله شده در یک جالب بالاتر خواهد بود. بنابراین، می‌توان نتیجه گیری کرد که افزایش در روند سطح باعث می‌شود بهترین سازه شریط پیش از کشتار کشور معمولی مناسب بوده است و یک مدل درجه دوم برای پیشینی بازنگری توسط شریط پیش کشتار متفاوت. نتیجه گردید.

مراجع

Pottinger, S.G., 2001. Femین این مطالعه نشان داد که کیفیت فیله از در اربیتاپ مستقیم با میزان خبیه فیله شده در یک جالب بالاتر خواهد بود. بنابراین، می‌توان نتیجه گیری کرد که افزایش در روند سطح باعث می‌شود بهترین سازه شریط پیش از کشتار کشور معمولی مناسب بوده است و یک مدل درجه دوم برای پیشینی بازنگری توسط شریط پیش کشتار متفاوت. نتیجه گردید.

Chaiyapechara, S., Casten, M.T., Hardy, R.W. and Dong, F.M., 2003. Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture, 219(1-4): 715-738. DOI: 10.1016/S0044-8486(03)00025-5.

Einen, O. and Thomassen, M.S., 1998. Starvation prior to slaughter in Atlantic salmon (Salmo salar): II. White muscle composition and evaluation of freshness, texture and colour characteristics in raw

Optimization of common carp pre-slaughter by using TBA index and Response Surface Methodology (RSM)

Bakhtiari, G. ¹; Alizadeh Doughikollae, E. ¹; Shahriari Moghadam, M. ²; Samimi, M. ³

*mohtassn.shahriari@uoz.ac.ir

1-Fisheries department, Faculty of Natural Resources, University of Zabol, Iran.
2-Environment department, Faculty of Natural Resources, University of Zabol, Iran.
3-Chemistry department, Faculty of Energy, Kermanshah University of Technology, Iran.

Abstract

The quality of fish flesh is affected by several factors including slaughtering methods and pre-slaughter conditions. In this study the effect of main operational variables such as fasting time (X_a), density (X_n) and fish weight (X_w) in the TBA value of common carp fillet has been evaluated and analyzed using the response surface method and Box-Behnken model. A numerical optimization model was performed to obtain the minimum amount of TBA in the fillets. Adapted fish treated by fasting time, density and weight and then harvested after 1, 4 and 7 days, slaughtered by smothering out of the water and then fillet. The results showed that the lowest TBA value on the second-order model was obtained at a low level of X_n (4 fish numbers), low level of X_w (500 g) and high levels of X_a (7 days fasting time). The optimal TBA value was determined 0.6842 by a model which was measured 0.701 after the practical validation test in the optimal condition which indicating the high accuracy of the model to determine the optimum pre-slaughter. Therefore, the results of this study showed that using the response surface method is appropriate to optimize pre-slaughter conditions of common carp and also the second-order model can be used to predict the response variable in different conditions of pre-slaughter.

Keywords: Cyprinus carpio, Slaughtering, Fasting time, Box-Behnken model

*Corresponding author
کارگاه های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

- کارگاه آنلاین بررسی مقایسه ای منون (مقدماتی)
- پروپوزال بروزال نویسی و پایان نامه نویسی
- کارگاه آنلاین پایان نامه و پایان نامه نویسی