روش کمترین مانده تعمیم یافته پیش‌شرت سازشده برای حل معادله

انتشار-هم رفت کسری

طیبه چراغ‌زاده، مهدی قاسمی، رضا خوش‌سیر، علیرضا انصاری;
دانشگاه شهرکرد، گروه ریاضی کاربردی، شهرکرد، ایران

چکیده
در این مقاله معادله انتشار-هم رفت کسری با نرخ می‌گیرد. برای به‌دست‌آوردن یک روش عددی، مشتق‌های کسری تعریف می‌شوند. به‌طور جزئی مشتق‌های کسری با نرخ می‌گیرد. برای حل معادله با استفاده از تعریف کرانک-نیکلسون کرایلوف گسترش‌دهیمنشان می‌گذرانند. این روش به‌صورت غیرمستقیم در پایان با معرفی یک ماتریس غیرمستقیم، بهبود کاربردی ارائه شده می‌شود. شدیده روش عددی از مسئله بررسی شده و در پایان با هدف تأیید نتایج تقریبی با آن روش، به‌کار گرفته می‌شود.

مقدمه
محاسبات کسری، تعمیمی از حساب دیفرانسیل و انتگرال است که می‌تواند در آن از میانه دلخواه باشد. به معادله دیفرانسیلی با مشتق‌های جزئی که مشتق‌های در آن از میانه دلخواه باشد. معادله دیفرانسیلی با مشتق‌های جزئی کرایلوف گسترش‌دهیمنشان می‌گذرانند. این روش به‌صورت غیرمستقیم در پایان با معرفی یک ماتریس غیرمستقیم، بهبود کاربردی ارائه شده می‌شود. به‌طور جزئی مشتق‌های کسری با نرخ می‌گیرد. برای حل معادله با استفاده از تعریف کرانک-نیکلسون کرایلوف گسترش‌دهیمنشان می‌گذرانند. این روش به‌صورت غیرمستقیم در پایان با معرفی یک ماتریس غیرمستقیم، بهبود کاربردی ارائه شده می‌شود. شدیده روش عددی از مسئله بررسی شده و در پایان با هدف تأیید نتایج تقریبی با آن روش، به‌کار گرفته می‌شود.

واژه‌های کلیدی: معادله انتشار-هم رفت کسری، کرانک-نیکلسون کسری، کرانک-نیکلسون‌کرایلوف انتقال‌یافته، GMRES، پیش‌شرت سازی، بازده‌های کننده، GMRES نیکلسون‌کرایلوف تکراری.
نتیجه حاصل شده نشان می‌دهد، دریافت‌‌های کرابلوف مستقل خطی است. برای محاسبه x_k از روش‌های تکراری GMRES زیر‌ فرضیه کرابلوف استفاده می‌کنیم. در این روش، جواب x_0 یک جواب تقریبی اولیه دستگاه باشد. روش تقریبی x_t را در زیر فرضیه x_t به گونه‌ای پیدا می‌کنیم که

$$
\min_{x \in K_k(A, \tau_t)} \| b - Ax \|_2 .
$$

کمینه‌شود. بنابراین $x_t = x_0 + k_x(A, \tau_t)$، در گام بعدی، جواب مانند $\tilde{x}_k(t)$ را به صورت تقریبی می‌گیریم:

$$
\tilde{x}_k(t) = (1 - \sum_{j=0}^{k} \alpha_j t^{j+1})x_0
$$

$$
\tilde{x}_k(0) = 1,
$$

سپس نتیجه می‌شود:

$$
r = \tilde{x}_k(A)t_0,
$$

که در آن x_t یک جواب تقریبی حداکثر در جریان است الک است. از محاسبات قسمت‌های قبل نتیجه می‌شود:

$$
\| r \|_2 = \| b - Ax \|_2 = \min_{\tilde{x}_k(t)} \| \tilde{x}_k(A)t_0 \|_2 \leq \| \tilde{x}_k(A)t_0 \|_2 .
$$

در گام بعدی به دنبال جمله‌ای $\tilde{x}_k(t)$، روش GMRES است x_t را در GMRES بردار باقی مانده تکرار k روش GMRES است.
زیر فضای $k_0 + k_1 (A_1, r_1) (A_k, r_k)$ به گونه‌ای پیدا می‌کنیم که مسئله کمترین مربعات خطی (1) کمینه شود. ابتدا فرض می‌کنیم ماتریس:

$$Q_k = [q_1, q_2, \ldots, q_k].$$

که ستوهای آن به موسیقی الگوریتم $A_1 r_1$ محاسبه شده یک یا به‌معنای یک برای زیرفضای $k_1 (A_1, r_1)$ باشد. از این برای هر بردار $\mathbf{y}_k \in \mathbb{R}^k$ بردار $x_0 + Q_k \mathbf{y}_k$ برای هر یافته می‌شود که:

$$x_k = x_0 + Q_k \mathbf{y}_k,$$

و با توجه به $\mathbf{y}_k = (1, 0, \ldots, 0)$ و $\beta = \| \mathbf{r}_0 \|_2$ داریم:

$$\min_{\mathbf{y} \in \mathbb{R}^k} \| b - A(x_0 + Q_k \mathbf{y}_k) \|_2 = \min_{\mathbf{y} \in \mathbb{R}^k} \| \beta - H_{k+1} \mathbf{y}_k \|_2,$$

بر اساس رابطه (7) (شما به یک مسئله کمترین مربعات خطی انتها اکنون با استفاده از روش‌های مختلف می‌تواند در این نمودار باشند [112]. در این مقاله مسئله انتشار-همرفت کسری با مسئله مربوط به یک منبع در نظر می‌گیریم. در ابتدا با استفاده از تعریف گرینوالد-لینکسون انتقال یافته [12][161] و سپس با روش تناوبی منطقه‌ای گرین-لینکسون کسری [15] گسترش‌برداری شده، در ادامه پایداری و سازگاری روش تناوبی منطقه‌ای بر پایه تعریف گرینوالد-لینکسون انتقال یافته بحث شده است، که مشابه روش داده شده در [151] است. در این مقاله از ماتریس پیش‌شروع‌برداری که رانگ یک و همکارانش برای حل معادله انتشار کسری معرفی گردیده‌اند [181]. برای حل معادله انتشار-همرفت کسری استفاده می‌کنیم. روش GMRES جبری به‌دست آمده مطرح می‌شود [161]. در پایان به‌حال تأیید نتایج نظری، با ارائه یک مثال روش GMRES پیش‌شروع‌برداری شده را ارائه می‌کنیم و ملاحظه می‌شود که نتایج عرضی نشان از کارایی روش GMRES پیش‌شروع‌برداری دارند.

معادله انتشار-همرفت کسری

$$\mu(x,t) = -v(x,t) \frac{\partial u(x,t)}{\partial x} + d_s(x,t) \frac{\partial^3 u(x,t)}{\partial x^3} + d_t(x,t) \frac{\partial^3 u(x,t)}{\partial x^3} + s(x,t), \quad x_1 \leq x \leq x_R, \quad t > 0, \quad (A)$$

$$u(x,0) = u_0(x), \quad x_1 \leq x \leq x_R,$$

$$u(x_{1-},t) = 0, \quad u(x_{R+},t) = 0, \quad t > 0.$$
که در آن \(\alpha \) ضرایب انتشار و \(\beta \) ضرایب انتشار و \(s(x,t) \) گرانوالد-لتنیکوف از مرتبه \(\alpha \) به‌طور برابرند با:

\[
\frac{\partial^n v(x,t)}{\partial x^n} = \lim_{h \to 0} \frac{1}{h^n} \sum_{k=0}^{\infty} g_k^{(n)} u(x + kh, t),
\]
(9)

\[
\frac{\partial^n v(x,t)}{\partial x^n} = \lim_{h \to 0} \frac{1}{h^n} \sum_{k=0}^{\infty} g_k^{(n)} u(x - kh, t),
\]
(10)

ضرایب گرانوالد-لتنیکوف هستند که به‌وسیله تعریف \(g_k^{(n)} \) گرفته می‌شوند:

\[
g_k^{(n)} = \frac{(-1)^k}{k!} \alpha(\alpha-1)\cdots(\alpha-k+1); \quad k = 1,2,\ldots.
\]
(11)

ضرایب \(g_k^{(n)} \) به‌طور بارگشتی باید صورت قابل محاسبه هستند:

\[
g_0^{(n)} = 1, \quad g_k^{(n)} = \frac{(-1)^{k+1}}{k!} \alpha(\alpha-1)\cdots(\alpha-k+1); \quad k = 1,2,\ldots
\]
(12)

یک روش مستقیم از روابط (9) و (10) در یک روش تفاضل متناهی ناباید باید ایجاد می‌کند. به‌همین دلیل از تعریف گرانوالد-لتنیکوف انتقال یافته به‌وسیله صورت استفاده کردیم:

\[
\frac{\partial^n u(x_n, t_m)}{\partial x^n} = \frac{1}{h^n} \sum_{k=0}^{\infty} g_k^{(n)} u_{n-k+1}^m + O(h),
\]
(13)

\[
\frac{\partial^n u(x_n, t_m)}{\partial x^n} = \frac{1}{h^n} \sum_{k=0}^{\infty} g_k^{(n)} u_{n+k+1}^m + O(h).
\]
(14)

\[\text{لیم: ~ فرض کنید} ~ 2 < \alpha < 1 ~ \text{و} \quad g_j^{(n)} \text{ با استفاده از رابطه (11) تعریف شده باشد. در این صورت:} \]

\[g_0^{(n)} = 1, \quad g_1^{(n)} = -\alpha, \quad g_2^{(n)} > g_3^{(n)} > \cdots > 0. \]
(15)

\[\text{برهان [13]: با استفاده از رابطه (11) تعیین شده باشد. در این صورت:} \]

\[g_j^{(n)} = (-1)^{j-1} \frac{\alpha}{j!} \quad \text{برای} \quad n \geq 1, \quad \sum_{j=0}^n g_j^{(n)} < 0, \quad \sum_{j=0}^n g_j^{(n)} = 0, \quad \sum_{j=0}^n g_j^{(n)} = O(j^{n+1}) \]
(16)

ضرایب \(g_j^{(n)} \) می‌تواند به‌عنوان ضرایب از سری توان برای به‌وسیله (16) در نظر گرفته شوند:

\[(1-z)^n = \sum_{j=0}^n (-1)^j \frac{\alpha}{j!} z^j = \sum_{j=0}^n g_j^{(n)} z^j. \]
(17)

\[\text{اگر} \quad 1 > z \quad \text{باشد، آن گاه داریم:} \]

\[\sum_{j=0}^n g_j^{(n)} = 0. \]
روش کمترین مانده نمیمی به شرط سازنده باید خل ماده، اشکال و رفت‌گری
از طرفی:
\[\sum_{j=0}^{n} g_{j}^{(a)} < \sum_{j=0}^{n} g_{j}^{(a)} + \sum_{j=n+1}^{\infty} g_{j}^{(a)} = \sum_{j=0}^{\infty} g_{j}^{(a)}. \]
(18)

از روابط (18-17) می‌توان نتیجه گرفت:
\[\sum_{j=0}^{n} g_{j}^{(a)} < 0. \]
(19)

ج) با استفاده از فرمول استرلینگ [119]:
\[\Gamma(x+1) \sim \sqrt{2\pi x} x^x e^{-x}, \]
\[g_{j}^{(a)} = \frac{\Gamma(j-\alpha)}{\Gamma(-\alpha)\Gamma(j+1)}, \]
\[\Gamma(j-\alpha) \sim \sqrt{2\pi(j-1-\alpha)(j-1-\alpha)} e^{-(j-1-\alpha)} \]
\[= e^{-(j-1-\alpha)} \sqrt{j-1-\alpha} (j-1-\alpha)^{(j-1-\alpha)} \]
\[\sum_{j=n+1}^{\infty} (j-1-\alpha) \sim j^{-\alpha-1}. \]
(20)

بنابراین اثبات کامل می‌شود.

روش تفاضل متناهی کرانک-نیکلسون کسری
\[\Delta t = \frac{T}{M}, \quad t_m = m\Delta t; \quad m = 0, 1, 2, \ldots, M. \]
(21)

شبکه عمومی نقطه مدکور را که عبارت است از \(x_n, t_m \) در نظر می‌گیریم و معادله دیفرانسیل را در این شبکه نقطه‌گسیت می‌سازیم. برای آسانی کار فرض می‌کنیم:
\[u_n^{(m)} = u(x_n, t_m), \quad q_n^{(m)} = q(x_n, t_m), \]
\[s_n^{(m+1/2)} = s(x_n, (t_m + t_{m+1})/2), \quad v_n^{(m)} = v(x_n, t_m). \]
(22)

برای گسته‌سازی مشتقی جزئی \(\frac{\partial u}{\partial t}, \frac{\partial v}{\partial x} \) بهترین از تقریب تفاضل پاس رو نسبت به مکان و تقریب تفاضل

www.SID.ir
مرکزی با گام زمانی \(\frac{\Delta t}{2} \) نسبت به زمان استفاده می‌کینم، چنین یعنی:

\[
\frac{\partial u(x, t)}{\partial t} \bigg|_{(x, t_{m+1}/2)} = \frac{1}{2} \left[-v(x, t) \frac{\partial u(x, t)}{\partial x} + d_+ (x, t) \frac{\partial^2 u(x, t)}{\partial x^2} + d_-(x, t) \frac{\partial^2 u(x, t)}{\partial x^2} \right]_{(x, t_m)} + \frac{1}{2} \left[-v(x, t) \frac{\partial u(x, t)}{\partial x} + d_+ (x, t) \frac{\partial^2 u(x, t)}{\partial x^2} + d_-(x, t) \frac{\partial^2 u(x, t)}{\partial x^2} \right]_{(x, t_{m+1})} + s(x, t)_{(x, t_{m+1}/2)}.
\]

بنابراین با استفاده از روابط (27-28) و (13-12) و صرف نظر کردن از خطای بریتی ماتریس‌های دو قطری پایین‌و تاب عینه‌ی بدین صورت است:

\[
\frac{u^{(n+1)} - u^{(n)}}{\Delta t} + \frac{1}{2} \left[\frac{-v^{(n+1)}}{h^2} u^{(n+1)} + \frac{v^{(n+1)}}{h^2} u^{(n)} - \frac{d^{(n+1)}_{+}}{h^2} \sum_{j=0}^{n+1} g_{j}^{(a)} u_{n+j+1} - \frac{d^{(n+1)}_{-}}{h^2} \sum_{j=0}^{n+1} g_{j}^{(a)} u_{n-j+1} \right] = \frac{1}{2} \left[\frac{-v^{(n)}}{h^2} u^{(n)} + \frac{v^{(n)}}{h^2} u^{(n)} - \frac{d^{(n)}_{+}}{h^2} \sum_{j=0}^{n+1} g_{j}^{(a)} u_{n+j+1} - \frac{d^{(n)}_{-}}{h^2} \sum_{j=0}^{n+1} g_{j}^{(a)} u_{n-j+1} \right] + s^{(m+1/2)}.
\]

اگر

\[
u^{(a)} = (u^{(a)}_1, u^{(a)}_2, \ldots, u^{(a)}_{N-1})^T, \quad s^{(m+1/2)} = (s^{(m+1/2)}_1, s^{(m+1/2)}_2, \ldots, s^{(m+1/2)}_{N-1})^T,
\]

\(D_L^{(m)} = \text{diag}(d^{(m)}_{1}, d^{(m)}_{2}, \ldots, d^{(m)}_{N-1}) \) و \(D_R^{(m)} = \text{diag}(d^{(m)}_{1}, d^{(m)}_{2}, \ldots, d^{(m)}_{N-1}) \).

همچنین \(G_u \) ماتریسی واحد از مرتبه 1 و \(R^{(m)} \) به ترتیب ماتریس‌های دو قطعی یاپیوندی نیز به صورت

به‌پایه ی [21] باشد.

\[R^{(m)} = \begin{bmatrix} v_1^{(m)} & 0 & 0 & \cdots & 0 & 0 \\ -v_2^{(m)} & 0 & 0 & \cdots & 0 & 0 \\ 0 & -v_3^{(m)} & v_3^{(m)} & \cdots & 0 & 0 \\ & \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & -v_{N-1}^{(m)} & v_{N-1}^{(m)} \\ 0 & 0 & \cdots & \cdots & 0 & -v_N^{(m)} \end{bmatrix}, \quad G_u = \begin{bmatrix} g_1^{(a)} & g_0^{(a)} & 0 & \cdots & 0 \\ g_2^{(a)} & g_1^{(a)} & g_0^{(a)} & 0 & \cdots \\ & \vdots & \ddots & \ddots & \vdots \\ g_{N-1}^{(a)} & \cdots & g_1^{(a)} & g_0^{(a)} & 0 \end{bmatrix} \]

رابطه (28) را می‌توان به صورت ماتریسی (30) نوشت:
روش کمترین مانده تعمیم یافته به شرط سازش‌ده برای حل معادله انشار دیدگاه کسری

\[
\begin{aligned}
\left[I + \frac{1}{2} A^{(m+1)} \right] u^{(m+1)} &= b^{(m+1)}, \\
A^{(m+1)} &= \left(\frac{\Delta t}{h} R^{(m+1)} - \frac{\Delta t}{h^2} (D_L^{(m+1)} G + D_R^{(m+1)} G^T) \right),
\end{aligned}
\]

که در آن

\[
\begin{aligned}
b^{(m+1)} &= (I - \frac{1}{2} A^{(m)}) u^{(m)} + \Delta t s^{(m+\frac{1}{2})},
\end{aligned}
\]

است. درایه‌های ماتریس \(A^{(m+1)} \) برای \(j = 1, 2, \ldots, N-1 \) به صورت (33) تعیین می‌شوند:

\[
\begin{aligned}
a_{i,j}^{(m+1)} &= \begin{cases}
\xi^{(m+1)}_i - \eta^{(m+1)}_i g_1^{(m+1)} e_1^{(m+1)} - \xi^{(m+1)}_j + \eta^{(m+1)}_j g_2^{(m+1)} e_2^{(m+1)}; & j = i + 1, \\
-\xi^{(m+1)}_j + \eta^{(m+1)}_j g_2^{(m+1)} e_2^{(m+1)}; & j < i - 1, \\
\xi^{(m+1)}_i - \eta^{(m+1)}_i g_1^{(m+1)} e_1^{(m+1)}; & j = i - 1, \\
\eta^{(m+1)}_i g_1^{(m+1)} e_1^{(m+1)}; & j > i + 1.
\end{cases}
\end{aligned}
\]

که در آن \(a \) دارایت ماتریس \(a \) با استفاده از (33) خواهد بود. با استفاده از لام‌نویس (33) می‌توان حکمی که در آن \(a_{i,j} \) لزوم آمدن ماتریس \(A^{(m+1)} \) و دستگاه \(\frac{d}{dx} h \) را برای حل معادله انشار دیدگاه \(\frac{d}{dx} h \) داشته باشیم:

\[
\begin{aligned}
\eta^{(m+1)}_i &= \frac{d^{(m+1)}_i}{h^2} \Delta t, \quad \xi^{(m+1)}_i = \frac{d^{(m+1)}_j}{h^2} \Delta t, \quad \zeta^{(m+1)}_i = \frac{1}{h} \Delta t, \\
\end{aligned}
\]

خاصیتی \(\tau \) ملاحظه می‌شود ماتریس ضرایب دستگاه (32) یک ماتریس قطر و سطری و اکید است. از این رو ماتریس معکوس‌پذیر و دستگاه (30) جواب یکتا دارد.

تحلیل پایداری

در این بخش قضیه‌ای را در راستای پایداری معادله انشار-هم‌فاز کسری مطرح و آنالیز می‌کنیم.

قضیه ١: روش تفاضل منتظره (33) بر پایه تعاریف گرانوالد-لینکوف انتقال‌یافته به صورت غیرمشروط پایدار است.

برهان: فرض می‌کنیم \(\lambda \) یک مقادیر ویژه ماتریس \(A \) و \(\lambda > a_{kk} \).

\[
\lambda - a_{kk} = \sum_{j=0,j \neq k}^{N-1} a_{kj} V_j / V_k
\]

با گرفتن قدر مطلق از رابطه (35) داریم:

\[
\| v \| = \max_{1 \leq i \leq N} | v_i |
\]

www.SID.ir
\[|\lambda - a_{kk}| = \sum_{j=0,j\neq k}^{N-1} a_{kj} \frac{v_j}{v_k}, \quad |\frac{v_j}{v_k}| \leq 1, \quad |\lambda - a_{kk}| \leq \sum_{j=0,j\neq k}^{N-1} |a_{kj}| \]

از آینه:

\[\sum_{j=0,j\neq k}^{N-1} |a_{kj}| \leq r_i^{(m+1)} - (\xi_i^{(m+1)} + \eta_i^{(m+1)}) g_i^{(a)}(\alpha), \]

از محاسبه‌های قسمتهای قبل نتیجه می‌شود:

\[0 \leq \lambda \leq 2(r_i^{(m+1)} - (\xi_i^{(m+1)} + \eta_i^{(m+1)}) g_i^{(a)}(\alpha)),\]

با توجه به این که 0 < \lambda < \lambda/2(1 - \frac{\lambda}{2} - 1). بنابراین 1 < \lambda/2(1 - 1) < 1، جمله‌ای آزمایش می‌گردد. بنابراین بر اساس نظریه هم‌ارزی لکس [22] نتیجه می‌شود روش تفاصل متناهی (20) به‌صورت غیرمشروط پایدار است.

ماتریس پیش‌شرط ساز

در این بخش هدف معرفی ماتریس پیش‌شرط‌سازی است که راکد لین و همکارانش معرفی کرده‌اند [18]. این را به شرح مطرح کرده‌اند.

\[G_u = A = (a_{ij}) \in \mathbb{R}^{n \times n}, \quad A^{-1} \geq 0\]

- ماتریسی گفته می‌شود اگر هر رابطه 0 i = 1, 2, ..., n را برقرار باشد.

\[\lambda = \text{شناخته‌ننفره ماتریسی} \quad \text{ماتریسی نامبنا ناپایدار با} \lambda = 0 \quad \text{شناخته‌ناپایدار ماتریسی} \]

- ماتریس است.

به‌رهان: فرض کنید E را می‌توان به‌صورت (39) نوشت:

\[E = D - (D - E) = D(I - (I - D^{-1}E))\]

\[B = I - D^{-1}E, \quad (I - D^{-1}E)x = \lambda x \quad \Rightarrow (D - E)x = \lambda Dx,\]

از آینه:

\[\lambda g_i^{(a)} x_i = g_i^{(a)} x_i - \sum_{j=0}^{N-1} g_i^{(a)} x_j; \quad \forall i = 1, 2, ..., N - 1.\]

بنابراین:

\[|\sum_{j=0}^{N-1} g_i^{(a)} x_j| = |\lambda g_i^{(a)} x_i|.\]
روش کنترل مدله تعیین یافته به شکل زیر شناخته شده‌بای خصوصی انتشار‌روم‌کری

\[
| \lambda | \| g_i^{(a)} \| X_j \| \leq \sum_{j=0}^{N+1} | g_j^{(a)} | \| X_j \| \implies | \lambda | \leq \frac{\sum_{j=0}^{N+1} | E_j^{(a)} |}{\| E_1^{(a)} \|}, \quad (42)
\]

از لح 1 خواصی داشت:

\[
| g_1^{(a)} | > \sum_{j=0}^{n} g_j^{(a)}
\]

بنابراین E یک ماتریس قطعی غالب سطحی آکید است. نتیجه‌گیری می‌شود 1 > 0. دارای:

\[
I - D^1 E = B \implies I - B = D^1 E,
\]

\[
(D^1 E)^{-1} = (I - B)^{-1} = \sum_{i=0}^{N-1} B^i \geq 0,
\]

\[
(I - B)^{-1} = E^{-1} D \geq 0.
\]

رابطة (46) نشان می‌دهد:

\[
E^{-1} = G_\alpha \geq 0.
\]

از این که \(G_n \) یک ماتریس-\(G_n \) و 0 \(\geq 0 \) است، نتیجه‌گیری می‌گیریم که \(M \) یک ماتریس است. با در نظر داشت اینکه ماتریس قطعی یک انتساب ماسب باید درست یک ماتریس پیش‌شرط ساز، \(G_\alpha \) را به‌صورت (48) تجزیه می‌کنیم:

\[
G_n = G_{n,k} + (G_n - G_{n,k}),
\]

\(k \) در آن داریم:

\[
G_{n,k} = \begin{bmatrix}
g_0^{(a)} & g_0^{(a)} & \ldots & g_0^{(a)} \\
g_1^{(a)} & g_0^{(a)} & \ldots & g_0^{(a)} \\
\vdots & \vdots & \ddots & \vdots \\
g_k^{(a)} & g_0^{(a)} & \ldots & g_0^{(a)} \\
g_k^{(a)} & g_0^{(a)} & \ldots & g_0^{(a)} \\
\end{bmatrix} + \sum_{j=1}^{N+1} g_j^{(a)}
\]

برای سادگی، مجموعه از یک ماتریس با پنای نوار 1+ک ماتریس قطعی مکانی از \(G_{n,k} \) مشابه بی‌شناخته داده می‌توان نشان داد \(G_{n,k} \) یک ماتریس مایع.-\(G_{n,k} \) یک ماتریس است. بنابراین \(G_{n,k} \) یک ماتریس قطعی غالب سطحی آکید است. نتیجه‌گیری می‌گیریم:

\[
\| G_n - G_{n,k} \|_\infty = O(k^{-a}).
\]

بنابراین ماتریس \(A^{(m+1)} \) را می‌توان به دو بخش زیر تجزیه کرد:

\[
A^{(m+1)} = A_k^{(m+1)} + B_k^{(m+1)},
\]

\(k \) در آن می‌تواند:

\[
A_k^{(m+1)} = \left(\frac{\Delta t}{h} \right) R^{(m+1)} \left(\frac{\Delta t}{h^2} (D_k^{(m+1)} G_{n,k} + D_k^{(m+1)} G_{n,k}^T) \right), \quad B_k^{(m+1)} = A_k^{(m+1)} - A_k^{(m+1)}.
\]

اگر ماتریس (41) تقریبی از ماتریس (I - A^{(m+1)} باشد. خطای نسبی آن عبارت است از:
روش GMRES

در سال 1986 رویکرد GMRES بوسیله سعد و شولتز ۱ به عنوان یکی از روش‌های زیرپنجاها یا کارایی‌ترین کاراف ویژه (۵۳) استفاده شد. اگر است این روش‌ها در پیش‌بینی‌هایی با استفاده از روش‌های پیش‌بینی‌های ساز و دستگاه‌های پیش‌بینی‌های ساز سابقه خواهد داشت. اگر است این روش‌ها در پیش‌بینی‌هایی با استفاده از روش‌های پیش‌بینی‌های ساز و دستگاه‌های پیش‌بینی‌های ساز سابقه خواهد داشت. با این حال، اگر است این روش‌ها در پیش‌بینی‌هایی با استفاده از روش‌های پیش‌بینی‌های ساز و دستگاه‌های پیش‌بینی‌های ساز سابقه خواهد داشت.

الگوریتم رویکرد GMRES

1. $u^{(m+1)} = u_0$
2.compute $r_0 = p_{k}^{(m+1)} (b^{(m+1)} - C^{(m+1)} u^{(m+1)})$، $\beta = \|r_0\|_2$ and $q_0 = \frac{r_0}{\beta}$
3. For $j = 1, 2, \ldots, k$
4. $q_j = (p_{k}^{(m+1)})^{-1} C^{(m+1)} q_j$
5. For $i = 1; j$
6. $h_i = q_i^T q_{i+1}$
7. $q_{i+1} = q_{i+1} - h_i q_j$
8. end
9. $h_i = \|q_{i+1}\|_2$
10. $q_{i+1} = \frac{q_{i+1}}{h_{i+1}}$

1 Saad and Schult
نتایج عددی
برای اثبات کارایی روش GMRES پیش شرط ساز شده، این روش را برای معادله انتشار-همرفت کسی
بدین صورت به کار می‌بریم.
مثال 1: معادله انتشار-همرفت کسی (\(A \)) را با \(\alpha = 1.8 \)
و ضرایب انتشار چپ و راست:
\[d_c(x, t) = \Gamma(1.2)x, \quad d_l(x, t) = \Gamma(1.2)x, \]
در بازه زمانی \([0, T] = [0, 2]\) و بازه زمایی \([x_L, x_R] = [0.1, 0.2]\)
بیدین صورت در نظر می‌گیریم:
\[s(x, t) = -32e^{-2(x - x_L)^2 + 0.125(x - x_L)}(2 - x)^2, \]
\[v(x, t) = 0.25x, \]
\[u_0(x) = 4x^2(2 - x)^2. \]
جواب دقیق این معادله عبارت است از:
\[u(x, t) = 4e^{-2(x - x_L)^2}. \]

نتایج با استفاده از MATLABR2010a روی لپتاپ msi با مشخصات 2.40 GHz و 4.00 RAM بعد از آمده است. دستگاه حاوی را بازایه متفاوت مختلف Intel(R)
GMRES و بازایه محاسبات و در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است. در جدول 1 میانگین تعداد تکرارها و بیشینه خطای بین جواب‌های دقیق و عادی به دست آمده است.

جدول 1. میانگین تعداد تکرارهای لازم برای همگرایی معادله انتشار-همرفت گسی

<table>
<thead>
<tr>
<th>(N)</th>
<th>(M)</th>
<th>GMRES</th>
<th>PGMRES</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 e</td>
<td>1 e</td>
<td>3</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>2 e</td>
<td>3 e</td>
<td>3</td>
<td>28/33</td>
<td>3</td>
</tr>
<tr>
<td>2 e</td>
<td>5 e</td>
<td>3</td>
<td>43/46</td>
<td>4</td>
</tr>
<tr>
<td>2 e</td>
<td>7 e</td>
<td>3</td>
<td>48/3</td>
<td>4</td>
</tr>
</tbody>
</table>
جلد 5، شماره 1، بهار و تابستان 1398

جدول ۲. زمان لازم برای همگرایی معادله انتشار–هم رفت کسری

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>GMRES</th>
<th>PGMRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۵</td>
<td>۱/۰۲۲</td>
<td>۱/۰۲۸</td>
</tr>
<tr>
<td>۵</td>
<td>۷</td>
<td>۱/۰۲۶</td>
<td>۱/۰۶۹</td>
</tr>
<tr>
<td>۷</td>
<td>۹</td>
<td>۱/۰۹۸</td>
<td>۱/۱۰۲</td>
</tr>
</tbody>
</table>

جدول ۳. عدد حالت ماتریس ضرایب برای معادله انتشار–هم رفت کسری

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>κ(Aₜ)</th>
<th>κ((Pₜ)²⁻¹Aₜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۵</td>
<td>۱/۰۱۴۲</td>
<td>۱/۰۴۲۹</td>
</tr>
<tr>
<td>۵</td>
<td>۷</td>
<td>۱/۰۸۲</td>
<td>۱/۱۰۱۷</td>
</tr>
</tbody>
</table>

شکل ۴. نمودار همگرایی روش GMRES به ازای \(M = ۳^5 \) و \(N = ۳^5 \)
روش کمترین مانده تعمیم یافته پیش‌شرط سازندگی برای حل معادله انتشار-هم‌رفت کسری

نتیجه‌گیری

در این مقاله معادله انتشار-هم رفت کسری بررسی شد. برای حل عددی آن از تعاریف گزالوتد-لیکسکوف انتقال‌افته و روش تفاضل‌مندکننده کرانک-نیکلسون کسری استفاده گردید، سپس روش GMRES برای حل معادله جبری به دست آمده مطرح شد. جدول‌های مربوط به مثال بالا، نتیجه‌گیری‌های می‌دهند که روش GMRES پیش‌شرط ساز، هم‌رفت کسری استفاده کرد و برای حل معادله انتشار-هم‌رفت کسری، جدول‌های مربوط به مثال بالا، نتیجه‌گیری‌های می‌دهند که استفاده از پیش‌شرط ساز باعث شده عدد حالت ماتریس ضرایب کوچک‌تر و در نتیجه تعداد تکرارها و زمان محاسبات کاهش یافته و سرعت همگرایی افزایش یابد.

منابع

8. خجسته‌سالکویه‌داود، "روشهای تکراری برای حل دستگاه معادلات خطي"، انتشارات موج چهارم (1344).
9. حجاریان مسعود، "نخستین درس در جبرخطی عددی"، انتشارات دانشگاه شهید بهشتی (1344).