ارزیابی کارایی مصرف آب و نور زنوتیپ‌های گندم نان در شرایط رطوبی و فتوتنشی متفاوت

مسعود عقت احمدی* - قربان نورمحمدی** - مسعود قدسی*** - محمد کافی****

تاریخ دریافت: 1390/3/3
تاریخ پذیرش: 1390/9/9

چکیده

به منظور ارزیابی عملکرد کارایی مصرف آب و نور زنوتیپ‌های گندم، آزمایشی مزرعه‌ای به صورت کریت هوا و بار داده شده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار و به منظور تثبیت آماری در بررسی تأثیر 36 نوع گندم و ۳۰ نوع زنوتیپ‌های گندم در شرایط رطوبی و فتوتنشی متفاوت، انجام گردید. نتایج نشان داد که نرخ کارایی مصرف آب و نور زنوتیپ‌های گندم به‌طور کلی بهتر می‌باشد. نتایج نشان داد که نرخ کارایی مصرف آب و نور زنوتیپ‌های گندم به‌طور کلی بهتر می‌باشد.

مقدمه

ایجاد پایداری در نظام‌های زراعی بکی در این مبحث زیست‌شناسی کاردستی است. این مطالعه به همراه شرایط طبیعی منابع رطوبی و نور، کاهش زیست‌مقدار کارایی مصرف آب و نور زنوتیپ‌های گندم را تاثیر بخشیده است. این پژوهش با همکاری میان‌زمینی برای پژوهش فناوری و کارکرد این مطالعه مورد بررسی قرار گرفت.

\[\text{WUE} = \frac{\text{WUEG}}{\text{HI}} \]

در میزان (1) \[\text{WUEG} \] عملکرد دانه، \[\text{WUE} \] عملکرد کارا، \[\text{HI} \] نرخ کارایی مصرف آب و نور زنوتیپ‌های گندم نان در شرایط رطوبی و فتوتنشی متفاوت

* - کارشناس جهاد دانشگاهی کشاورزی، تهران
** - کارشناس علوم زراعی، دانشگاه علوم زراعی، تهران
*** - کارشناس علوم زراعی، دانشگاه تربیت معلم، تهران
**** - کارشناس علوم زراعی، دانشگاه علوم زراعی، تهران

Email: meahmady@yahoo.com

www.SID.ir
نسبه پژوهش‌های زراعی ایران، جلد 10، شماره 3، 1391

246

٤٠٠ ٤٠٠

ام ایش بارده تبدیل تشکیل به ماده خشک (کاراکی مصرف نور) یک آب توانایی گیاه برای تولید ماده خشک (بیومس) به ازای واحد آب تبخیر و تعریف آن به‌کار می‌رود که جراید (33) این را به وسیله ماده‌الدین

(٣) پایان کرده است:

WUE = TE / (1 + (Es / T))

(٤) کاراکی تحقق (ویژن خشک) انداز‌های آب و طاقبیت به میزان آب از دست رفته به وسیله تعریف Es = مقدار آب از دست رفته از طریق تبخیر از سطح خاک و T = مقدار آب از دست رفته از طریق تعریف و سیستم گیاهی زراعی باشند. بر اساس ماده‌الدین فوسل

(٣) در مطالعه (٣) کاراکی تحقق در مورد اثرات تنش و طوفان اثر بر نشان و خشکی و فاکتور استفاده گزارش گردید، که در آرام معیار این مقدار در فاصله بین مرحله سیستم م Geschä همدیده رفتن ١٥٠ تا ١٨٠ گرم بر مگاول. سیستم تا اتفاقات ١٣٧٢ تا ١٦٥ گرم بر مگاول. سیستم تا اتفاقات ١٥٩/٧ تا ١٤٩/٥ گرم بر مگاول بود.

فناوتی با مخاطب در مورد اثرات تنش و طوفان بر وضعیت فوسلتنی انجام شده و به طور کلی چنین نشان داده شده است که تنش درطوفان در دستگاه‌های انجام شده برای رژیم را روز با روز از فوسلتنی تحت شرایط تحت شرایط نش و رفع فوسلتنی بهره‌مندی انجام زندگی یافته و سیستم فوسلتنی در مراحل بحثی روی گزارشگان (هیجانی) که شرایط معیاری باید و انتخاب مکان مناسبات وضعیت نش شده و چنین شدند و زمان وقفه و خوانیده بود و توجه به مطالب فوق هدف از این تحقیق، بروز اثرات طوفان بر مکان یافته، کاراکی مصرف آب و نور

زوئتیپس‌های کنی می‌باشند.

مواد و روش‌ها

این تحقیق با استفاده از آزمایش‌های مقاوم به صورت کرده های در بارند شده یا در پایداری برای طرح بلوک‌های کاملاً شکل‌دار و به دست دو سال (۳۹-۳۸ و ۳۸-۴۷) از استقلاص تحقیقات شکری و مولکول‌های فعال در طول فصل زمستان و (D1) در حدی بر روی خاک لو می‌آخذ در درختی محله که برای رشد در محیط بی‌خود (بی‌خود گیاهی) به بهبود می‌رسید بسیار به بهبود کارکرد و (PAR) می‌تواند در طبقه‌بندی مطالعات اصلی بیانگر نمایندگی به معنا اصلی بیانگر خود که می‌تواند در طول فصل دواند.

1- Radiation
2- Radiation Interception Percentage
3- Radiation Use Efficiency

www.SID.ir
امامیه یک توخال سراسری شکم کنده در سال ۱۳۸۸-۸۱-۸۰ و تیم رادیو فیزیک (G) و نقش کارس شاخص (G) حساس به شکم (G) و تیم شرایط (G) فتوستاتی در کره‌های فرعی شامل استفاده از پنوماژی جاری (G) بود. برای اجرای تیمار حدود ۱۴ تا ۲۰ روز پس از نظر سلطانی من به آغاز مرحله رشد طبیعی پر کردن داده‌ها، یک‌پنتریبا با غلظت ۰/۳ درصد ماده مؤثر را روی کلیه گیاه‌های کنار آن در نقطه‌های کناری آن برداشت و سپس پشتیبانی که از فتوستاتی جاری جلوگیری به عمل آمده (۱۴) آماده شد و در ۲۰ درصد از یک‌کیلوگرم (روز) مرکزی چند با فواصل ۰/۳۰ متر به منظور اطمینان از عدم تداخل امکانی در یک روز می‌شد. در دو روز بعد از یک روز، برای کاهش کردن، تیمار تیمار دفع شد. گل‌بگونه که به عنوان گونه‌ای (ای) به صورت کامل تافی (بیم) در هر کمتر بیشتر از سال سال متوسط دمای گیاهی (G) برای تمیزی و درآمدهای سه‌گانه بیشتر. شکم (G) به عنوان سال ۱۳۷۸ سی‌پسی‌گی (G) در محدوده‌ای زیر به دست آمده که (G) در شاخص سطح بکر می‌باشد.

\[
\text{RI} = 1 - (1 - \text{RI}) \times 100
\]

\[
K = [\ln (I - 1)] / \text{LAI}
\]

\[
\text{PAR} = 0.48 \text{RG}
\]

\[
\text{PARa} = 0.95 \times \text{PAR} \times (1 - \exp(-k \times \text{LAI}))
\]

\[
\text{RUE} = (W_n - W_{n-1}) / (\text{cPARa} - \text{cPARa}_{n-1})
\]

\[
R = \left(\theta_{w1} - \theta_{w2}\right) \times Bd / r_{100}
\]

www.SID.ir
مجموع بارندگی سال أول و دوم به ترتیب 779.85 و 59.59 میلی‌متر بود که به ترتیب 58/57 و 33/27 میلی‌متر میزان بارندگی دوم و سوم بود. سال لایه زیرین‌تر، وزن‌سازی سر در به ترتیب 138/7، 32/7 و 13/7. دارای مقدار بارندگی در بالای وزن‌سازی و به ترتیب 279.3، 24/3 و 27 میلی‌متر به پایین‌تر می‌باشد. میزان بارندگی در سال هایی که از طریق فشرده شده‌اند (طرح فعال) چشمه‌ها را به خوبی تأمین می‌کنند و در این‌جا، مقدار بارندگی در این‌جا کم‌تر از 279.3 می‌باشد.

نتایج و بحث
عملاک پیش‌بینی
تجزیه و تحلیل مکرک داده‌های سال‌های آذر، سپتامبر، ژانویه و گزارش‌های سال 1396 انجام شده است. شرایط فیزیکی و شرایط دما به ترتیب دو متغیر نهایی از مدل‌های مختارانه و تربیت‌دهندگی مورد بررسی قرار گرفته اند. آمارهای نهایی در مورد داده‌ها به صورت جدول‌های 1 و 2 ارائه شده است.

اندازه‌گیری‌های فیزیولوژیکی
تغییرات فیزیولوژیکی به ترتیب دو متغیر نهایی از مدل‌های مختارانه و تربیت‌دهندگی مورد بررسی قرار گرفته اند. آمارهای نهایی در مورد داده‌ها به صورت جدول‌های 1 و 2 ارائه شده است.
جدول 1- خلاصه نتایج تجربی و اریزیس (میانگین مربوط) صفات مورد آزمایش

<table>
<thead>
<tr>
<th>کاراکتر مصرف آب</th>
<th>بر حسب عملکرد بیولوژیک</th>
<th>عملکرد بیولوژیک</th>
<th>عملکرد دانه</th>
<th>تعداد‌گی</th>
<th>میزان تغییر</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1 = کمترین (1213 کیلوگرم در هکتار) عملکرد دانه را</td>
<td>C = میانگین (1828 کیلوگرم در هکتار) عملکرد دانه</td>
<td>G3 = بیشترین (1853 کیلوگرم در هکتار) عملکرد دانه</td>
<td>G4 = در حدود 39934 دارد</td>
<td>C.75</td>
<td>برای (C.75) 322/72</td>
</tr>
<tr>
<td>G2 = متوسط (1523 کیلوگرم در هکتار) عملکرد دانه</td>
<td>G3 = بیشترین (1853 کیلوگرم در هکتار) عملکرد دانه</td>
<td>G4 = در حدود 39934 دارد</td>
<td>C.75</td>
<td>برای (C.75) 322/72</td>
<td></td>
</tr>
</tbody>
</table>

اثر متقابل: تنش رطوبت × شرایط فوستنژی بر عملکرد دانه را به خوبی اختصاص داده. اثر متقابلی علیا و زیر بر عملکرد دانه در شرایط آبیاری کامل و استفاده از فوستنژی جاری به بهترین در حال که در شرایط تنش رطوبت و شرایط از فوستنژی جاری زننی (G1) با اثر عملکرد دانه (به ترتیب 7870899000 کیلوگرم در هکتار) از مهارتی در شرایط مطلوب رطوبت و جلوگیری از فوستنژی جاری کاری زننی 10-81 (G1) (1828 کیلوگرم در هکتار) و در شرایط تنش رطوبت و جلوگیری از فوستنژی جاری زننی (G1) 9116 (1828 کیلوگرم در هکتار) و 0-10 (1853 کیلوگرم در هکتار) بیشترین عملکرد دانه را داشته است. در حالی که در کلیه شرایط رطوبت و فوستنژی، رقیم کشی شاهد美好 عملکرد دانه را به خود اختصاص داده. با توجه به نتایج حاصل از اثر متقابل زننی × شرایط فوستنژی بر عملکرد دانه منشأ شد که علاوه بر اثرات متفاوت شرایط فوستنژی بر عملکرد دانه، واکنش ارگک نیز در شرایط F_1 1931 (G1) از بیانی随着ی استفاده از فوستنژی جاری زننی (G1) (1828 کیلوگرم در هکتار) برخوردار بود. در صورتی که نگاه کشی شاهد美好 عملکرد دانه (G1)

www.SID.ir
جدول 2- مقایسه میانگین عملکرد بیولوژیکی عملکردها و کارایی صرف آب (بر حسب عملکرد بیولوژیکی و دانه) های تنش رطوبتی

<table>
<thead>
<tr>
<th>کارایی صرف آب بر حسب عملکرد بیولوژیکی (kg.ha⁻¹.mm⁻¹)</th>
<th>عملکرد بیولوژیکی (kg.ha⁻¹)</th>
<th>عملکرد دانه (kg.ha⁻¹)</th>
<th>سطح</th>
<th>تنش رطوبتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1/841 a</td>
<td>1/58 a</td>
<td>1/847 a</td>
<td>D₁</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/58 a</td>
<td>4/87 a</td>
<td>G₁</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₂</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₃</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₄</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₅</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₆</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₇</td>
<td></td>
</tr>
<tr>
<td>-1/847 b</td>
<td>1/847 a</td>
<td>1/847 a</td>
<td>G₈</td>
<td></td>
</tr>
</tbody>
</table>

یک نکته درباره یک حرف مشترک در سطح 3/5 با یکدیگر اختلالات می‌تواند به ترتیب گزارش شود.
کارایی مصرف آب

جرم آب مصرفی در تمام شاهد (آب‌یاری کامل) و تیمتر نش رطوبتی (قطع ایبایر از مرحله ظهور سیاسک تا پایان دوره رشد و گلوکوری از نظر باران) در سال اول به ثبت رسید 202/496 و در سال دوم به ثبت رسید 202/475 میلی‌متر بود (جدول 3). نتایج به دست آمده از کارایی مصرف آب بر حسب عملکرد دانه نشان داد کارایی مصرف آب بالاتر از مقادیر آن در سال اول بود (جدول 4). با اعمال تیمتر نش رطوبتی، کارایی مصرف آب بر حسب عملکرد دانه در هر دو سال کاهش یافت و نتایج داده‌ای از کارایی مصرف آب بر حسب عملکرد دانه به طور نسبی کاهش یافت (جدول 4).

جدول 3- اثر محدودیت رطوبتی و زنوتیپ بر سطح برق در مراحل مختلف نم‌گندم

<table>
<thead>
<tr>
<th>نش رطوبتی</th>
<th>حمیمی نرم (Soft dough)</th>
<th>نش رطوبتی</th>
<th>ظهور برق (Anthesis)</th>
<th>ابتدا طول شدن ساعت (T.S)</th>
<th>کل انگشتی (F.I)</th>
<th>دو برقی</th>
</tr>
</thead>
<tbody>
<tr>
<td>WUEC</td>
<td>31/774a</td>
<td>31/685a</td>
<td>201/521</td>
<td>31/685</td>
<td>31/694a</td>
<td>31/697a</td>
</tr>
<tr>
<td>2/629a</td>
<td>31/668a</td>
<td>31/694a</td>
<td>31/697a</td>
<td>31/697a</td>
<td>31/697a</td>
<td>31/697a</td>
</tr>
</tbody>
</table>

جدید گندم گزارش کردن. بنابراین اهمیت شاخ صفحه سیاسک برگ در مرحله پیش در دانه در ارتباط با عملکرد دانه و افزایش است. کاهش سطح برق ناشی از تغییر رطوبتی در مرحله پیش در دانه به دلیل بیشتر زودرس برگها و کاهش دیوار برفی سیاسک برگ توسط بیماری از پژوهشگران در گندم کردن داشته است (5 و 11).

زنوتیپ‌های هدف از نظر شاخ صفحه سیاسک برگ تلقیه‌ای معنی‌داری را در مرحله ظهور برق چربی، ظهور سیاسک، حمیمی نرم و رسیدگی فیزیولوژیک نشان دادند (جدول 3). زنوتیپ‌های G1 و G2 در مرحله ظهور برق G8 برای بیشترین شاخ صفحه سیاسک برگ را داشتند. کمترین شاخ صفحه سیاسک برگ در مرحله نمو فوق مربوط به زنوتیپ‌های G1 و G2 (کارس شاهی) و G4 (مشکل 1). با توجه به اینکه زنوتیپ های شماره 1 و 3 بالاترین عملکرد دانه را نیز دارا بودند و پس از آن دانه های زنوتیپ شماره 3 از نظر عملکرد دانه فار داشتند و کمترین عملکرد دانه نیز مربوط به زنوتیپ های شماره 8 بود. با مقایسه روند شاخ صفحه سیاسک برگ، کاهش عملکرد زنوتیپ شماره 8 و افزایش عملکرد دانه زنوتیپ های شماره 1 و 7 و 6 نتیجه می‌گردد.
جدول ۶- میزان بارندگی، حجم آب مصرفی، عملکرد دانه و گرمایی مصرف آب انباری در تیمارهای مختلف تنش رطوبتی

<table>
<thead>
<tr>
<th>میزان بارندگی (WUEG) (kg.ha⁻¹.mm⁻¹)</th>
<th>عملکرد دانه (WUEG) (kg.ha⁻¹)</th>
<th>حجم آب مصرفی با اختصاص (جریان) (mm)</th>
<th>بارندگی مؤثر (بارندگی افزایش یافته) (mm)</th>
<th>تیمار</th>
<th>تنش رطوبتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸/۷۸۸</td>
<td>۷/۸۴۴</td>
<td>۸/۵۱۸/۵</td>
<td>۶/۸/۱</td>
<td>D۱</td>
<td>۸/۵۱۸/۵</td>
</tr>
<tr>
<td>۶/۸۸۹</td>
<td>۶/۸۲۹</td>
<td>۶/۵۲۳/۷</td>
<td>۸/۳/۶</td>
<td>D۲</td>
<td>۶/۵۲۳/۷</td>
</tr>
</tbody>
</table>

نمره‌های روز رشد

برای وزنی‌های زیر به وسیلهٔ تیمار D۱

Y = -3E⁻⁹X³ + 1E⁻⁵X² - 0.006X + 1.2899

R² = 0.9505

جهش ۱- روند تغییرات شاخص سطح برگ زنوتیپ‌های گندم با یک‌فرش مراحل نمو

در سال اول اجرای آزمایش، بالاترین WUEG در تیمار D۱ زنوتیپ ۹۱۱۴۶ اختصاص یافت، در حالی که در تیمار D۲ بیشترین WUEG متعلق به زنوتیپ ۹۱۷۲۷ بود. در هر دو شرایط بارندگی و در هر دو سال آزمایش، رقم کم‌افزایشی و در WUEG در WUEG زنوتیپ ۹۱۱۴۶ داشت (جدول ۵). دلیل اصلی کم‌افزایش WUEG بین زنوتیپ‌های مورد بررسی در و تیمار تنش رطوبتی، به عملکرد دانه آنها مربوط بود. بر طبق نتایج فوق، مقدار آب مصرفی در شرایط بارندگی به وسیلهٔ تیمار D۱ کاهش یافت.

در شرایط بدون تنش (پایانس) و با استفاده از فتوستات جایی و کمپوزیتیون WUEG داشت (جدول ۵). کلیه‌ی نتایج در شرایط تنش رطوبتی (رقم کم‌افزایشی در شرایط تنش رطوبتی مکعب) به تیمار D۱ و D۲ نسبت داده شد.
جدول 5- برهمشک تنش رطوبتی در زمین‌ها به مقدار ابسیم مصرف آب اپاریس زنوتیپه‌های گندم

<table>
<thead>
<tr>
<th>سال زراعی</th>
<th>WUEc (kg.m⁻³)</th>
<th>عکملدردانه (kg.ha⁻¹)</th>
<th>حجم اب مصرفی (mm)</th>
<th>WUEc (kg.m⁻³)</th>
<th>عکملدردانه (kg.ha⁻¹)</th>
<th>حجم اب مصرفی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1388-87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / 87</td>
<td>920</td>
<td>3273</td>
<td>0 / 87</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
<tr>
<td></td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
<td>0 / 914</td>
<td>920</td>
<td>3273</td>
</tr>
</tbody>
</table>
مقایسه شیب‌های مقداری از طرف وزن‌بندی هدایت (D) با یکسانی در شاخه سطح پرگ در مرحله خمیری
تیم و سیدگی فیژیولوژیک شد (D2)، اما اثر این عامل بر ضریب
خانمی نور (K) یا مشابه داده نشده. بنابراین این نتایج جدید نور عاملی از این تعداد کمیکی دارد (D3) یا
ضریب خاموشی نور یا باعث کاهش معنی‌داری از این تعداد کمیکی
که در شیب‌های مقداری از طرف وزن‌بندی هدایت (D) نشان داده شد. (D2) در مطالعه دیگر بازیابی عامل
که در تحقیقات سطح پرگ و ضریب خاموشی نور داشت. (D3)
که در تحقیقات سطح پرگ و ضریب خاموشی نور داشت. (D3)
که در تحقیقات سطح پرگ و ضریب خاموشی نور داشت. (D3)
که در تحقیقات سطح پرگ و ضریب خاموشی نور داشت. (D3)
شاخص اثرات جذب نور فعل فتوسنتزی (PARI) زننیته‌های گندم با یکشش مراحل نمو برک باشند، زیرا در شرایط تنش رطوبتی جلوگیری از جذب تشخیص اضافی که باعث عمل عضلانی فتوسنتزی می‌شود (۴۴) بساز جاری احتمال است.

روند تجمع ماده خشک با توجه به نور فعل فتوسنتزی جذب شده تجویز (CPARI) در شرایط بهینه و محدود‌تر رطوبتی در شکل ۳ نشان داده شده است. مقایسه شیب خطوط برآوری (رادمان مصرف نور) در شرایط بهینه (D1) با شرایط محدود‌تر رطوبتی (D2) نشان داد که رادمان مصرف نور در شرایط بهینه با محدودیت رطوبتی تفاوت معنی‌داری نداشت. عدم تأثیر محدودیت رطوبتی بر رادمان مصرف نور به دلیل کاهش نسبی و یکسان نور تجمعی جذب شده و ماده خشک بوده، زیرا بین تجمع ماده خشک و تر نیک (CPARI) شده یک رابطه خیلی و وحش دارد (۴۴، ۳۷ و ۲۹).

نابرابری کاهش تجمع ماده خشک با نسبت کاهش جذب نور فعل فتوسنتزی جذب شده را تأثیر دارد. باعث نشان داد که رادمان مصرف نور در شرایط بهینه به نظر می‌رسد که کاهش جذب

\[Y = -3E-08X^3 + 9E-05X^2 - 0.0256X + 19.081 \]

\[R^2 = 0.9844 \]

\[GDD \]

(۴۴) روند مهم روابط خیلی و وحش دارد (۴۴، ۳۷ و ۲۹).

کاراکتر مصرف نور (RUE) (۴۴)
اضافی در شرایط تنظیم شدید می‌باشد. در این صورت انتخاب صفات مورد نظر مناسب با وضعیت تنظیم (از نظر شدت و زمان وقوع) خواهد بود.

بر اساس تأثیر به دست آمده از این آزمایش در شرایط معمولی رطوبتی و استفاده فتوسنتز جاری ژنوتیپ های C-81-10 و C-81-10 بهترین ژنوتیپ های از نظر عملکرد دانه و کاراکتر مصرف آب بودند. ژنوتیپ‌های C-81-10 و C-81-10 تحت شرایط معمولی و جلوگیری از فتوسنتز جاری بالاترین عملکرد دانه و کاراکتر مصرف آب را داشتند. در شرایط نش رطوبتی و تحت شرایط استفاده از فتوسنتز جاری ژنوتیپ های C-81-10 و C-81-10 و در شرایط نش رطوبتی و جلوگیری از فتوسنتز جاری ژنوتیپ های C-81-10 و C-81-10 دارای بالاترین عملکرد دانه و کاراکتر مصرف آب بودند. با توجه به مطالعات فوق، ژنوتیپ‌های C-81-10 و C-81-10 را می‌توان به عنوان ژنوتیپ‌های ایده‌آل بخش و مناسب برای شرایط نش رطوبتی معرفی نمود، در حالی که تحت شرایط معمولی هم عملکرد دانه آنها بالا بود.

زنجیب هایی که وزن خشک کمتری داشتن به همان نسبت نور گمیکه جذب کرده بودند و نهایتاً آستانه مصرف نور نسبتاً تابی بود. رابرت و گیوتا (22) عدم تغییر ژنوتیپی در این واریته‌ها گندم از نظر آستانه مصرف نور گزارش کرده. لگ و همکاران (23) تأثیر مشابهی در جو و سردردیک و نالبوزنیک (17) در ترمیم‌کالیه گزارش کردهند. این تأثیر تحقیق را تایید می‌نماید.

کالدین و همکاران (15) در مورد کارایی مصرف نور در گندم پیان داشتن که اگرچه در ارقام قدمی و جدید در دوره قبل از ری و گرده افشانی یکسان بود، اما در ارقام جدید در طی دوره پس از گرده افشانی به طور بارزی کارایی مصرف نور و سرعت رشد محصول نسبت به ارقام قدمی بیشتر بود. همچنین آنها اظهار داشتند در مرحله گرده افشانی زیست توده ارقام جدید کمتر از ارقام قدمی بود و بنابراین کارایی مصرف نور به عناوین یک سطح خاصی فیزیولوژیک مهم با استن در برنامه‌های به نزایی کنیم محور شود، اما طور خلاف، آنها گفت به دریافت طراحی کمیاب تحت شرایط نشی، ناپایدار ایجاد نتایج به علت حادثه فتوسنتز در مراحل محرزی رشد. (هنگامی که شرایط مطلوب باشد) و اجتناب از اثرات محیط تابش

![Diagram](https://placehold.it/595x842)

این شکل ۲- ارتباط بین ماده خشک تجمعی و تاباش فعال فتوسنتزی جذب شده تجمعی (CPARI) در شرایط بیهی (D1) و محدودیت رطوبتی (D2)
نابی عامل فعال فنوسنتزی جذب شده تجميعی (CPARI) در زننده‌های گندم

شکل 4- ارتباط بین ماده خشک تجميعی و نابی عامل فعال فنوسنتزی جذب شده تجميعی (CPARI) در زننده‌های گندم

منابع

1- آبادی، ب. 1372. انتخاب برای مقاومت به خشکی در گندم. مجموعه مقالات کنفرانس اولین کنگره زراعت و اصلاح نباتات ایران. کرمان. ص: 56-57

2- خرچنگی، ح. 1381. اثر تنظیم صدها زراعت در گونه‌های نژادی دانشگاه فردوسی مشهد. 22 صفحه.

3- عزت‌احمیدی، م. و. نورمحمدی، م. ق. و. کاهی، ز. 1389. اثر تنظیم رطوبت و محول بانی از دیدگاه بر خصوصیات زراعی و عملکرد دانه زننده‌های گندم. 7(4): 181-187.

4- علیزاده، ل. 1372. اصول طراحی سیستم‌های آبیاری دانشگاه آماده رضا. ص: 252-205.

5- قلی‌نژاد، م. و. 1383. جنبه‌های کوفیپولیتوکسین کم‌هی در رشد و نمو از قارچ گندم رسانه دکتری زراعت. دانشگاه کشاورزی. دانشگاه تهران.

www.SID.ir

