بررسی ضرایب همبستگی صفات تجزیه علیت و شاخص‌های تحلیل به خشکی در گدد تحت شرایط کم آبی و سطوح مختلف نیتروژن

به چکیده

شکل‌های تحلیل به خشکی. نگسته‌ها در همبستگی صفات با عامل‌کننده دانه و نیز تفکیک اثرات مستقیم و غیر مستقیم صفات از طریق تجزیه علیت در تحقیقاتی که پربا می‌گردد. نگسته‌ها فراهم کننده دانه در سه تکرار و به‌دست داده‌های رژیم‌های افزایش تحقیقات کشاورزی هدایت به اجرای مورد استفاده قرار گرفته. امکان بررسی دانه در راه اندازی و غیر. تجربه علیت نشان داده که عامل‌کننده دانه به ترتیب با دانه‌های بی‌درنگ و نیتروژن خالص در هم‌بستگی از تحقیقات محاسبه شد. این نتایج می‌تواند به شاخص‌های متابولیک و به‌کارگیری در تحقیقات مرتبط با محصولات افزایش بی‌درنگ و نیتروژن خالص در گدد تحت شرایط کم آبی و سطوح مختلف نیتروژن

مقدمه

یکی از اهداف کشاورزی نیوزیلند، به‌وسیله‌سازی مصرف آب و نیتروژن از طریق عامل مصرف کم آبی و کاهش تولید نیتروژن، افزایش محصولات افزایش بی‌درنگ و نیتروژن خالص در گدد تحت شرایط کم آبی و سطوح مختلف نیتروژن

(Email: art.tavakoli@gmail.com)

www.SID.ir
مقدمه

تجزیه علیت و شاخص‌های تحلیل جسمانی (Path Analysis) است. اگر چه اجزای اصلی عامل‌ها در دندان‌های مختلف سالم و بهبودی و مستحکم صفات از طریق تجزیه علیت برخی از این ساختار شاخص‌های تحلیل به خشکی در شرایط کم‌درمانی و نیتزروده را کنده مورد متغیر قرار بوده‌اند.

مواد و روش‌ها

این تحقیق در ایستگاه تحقیقات کشاورزی دبیر، مراغه و بر روی گندم آبی رقیق محصول از انجام شد. خاک آزمایش سر سیستم بود و منی تأمین کننده، پایه است. این تحقیق بر با یارا طرح پژوهشی کاملاً تصادفی و به کلیه اصلی اصالتی پیامد صفر درصد آبی‌ایر (کرک) شامل: ابتدا آب، منی تأمین آب و منی ۹۹ درصد آبی‌ایر کامل (سمت ۷۶ درصد) تأمین آب و منی ۳۳ درصد آبی‌ایر کامل (سیر تحقیقات) نتایج آب و منی ۲۳ درصد اقتصادی به کمک ابزار بیشتر عوامل مورد است. حساسیت نشان دهنده تحقیقات شاندینگهای عمده کم‌تغذیه‌ای کروکده، به طوری که قابل توجهی داشته باشند. تحقیقات دانه از دستگاهتکنیک و بیمار یافت و نهایاً دانه داشتن و (۲۱) درصد با جف‌مرکزی دانه به وسیله بروز اولیه تعداد سیب و سپس تعداد دانه در سنبله و وزن هزار دانه داشت (۲۱) مانند کمک و (۲۸).

کلیولبر در هستار نیتزرود خالص بود. آماری در دست نوازش را به سمت ۴۰۰ دانه در مترا مربع تعیین و با دستگاه بذر کار آزمایشی و محیط‌سازی در بازی (محم مه) و در عمق ۳-۵ سانتی‌متر کنت کرده‌اید. میکروکنر منی آب ایبی‌ایار دو برای چهار تیمار آبی‌ایار به ترتیب بیست (۲۰۰۰۰) و صفر بیست و پنج هزار بود. اولین آبی‌ایار در بازی برای تأثیر می‌باشد تا در می‌تواند درصد ۳۲ درصد به سر سیستم بود و معنی‌داری داشته باشد. درصد ۵۴ درصد در آبی‌ایار های راه مشترک یکدیگر می‌باشد. نتایج بررسی‌های (۲۱) برای سه بعدی و منی ۳۵ درصد بود. که به حد ارزش معنی‌دار تحلیل چندانکه (۲۱) درصد ۱۳۴ درصد ۴۰، (۲۳) و (۳۲) حساسیت و (۲۴) و (۲۳) و (۴۳) و (۴۴) به بروز اولیه تعداد دانه در سنبله و وزن هزار دانه داشت (۲۱) مانند کمک و (۲۸).

www.SID.ir

$$HM = \frac{2 \times Y_g \times Y_p}{Y_g + Y_p}$$

که در آن:

- $$Y_g$$: عملکرد تحت شرایط تنش، کیلوگرم در هکتار
- $$Y_p$$: عملکرد تحت شرایط بدون تنش با آبیاری کامل، کیلوگرم در هکتار

با این توضیح که یک بار از عملکرد دانه و بار دیگر از شاخص (Irrigation Water Productivity = IWP) به جای عملکرد دانه در هر یک از سطوح کودی استفاده شد که بیانگر اهمیت آب در تولید به آزای واحد آب مصرفی است:

$$IWP = \frac{Y_g}{IWU}$$

که در آن:

- $$IWU$$: مکعب عملکرد دانه، کیلوگرم در هکتار
- $$Y_g$$: آب آبیاری متر مکعب در هکتار
- $$IWU$$: عملکرد دانه (کیلوگرم بر هکتار)

جدول 1- عملکرد دانه و شاخص‌های تحمل به خشکی در مقایسه دو روش تراشیده و اثر بهبود نش و سطوح مختلف نیتروژن (بر مبنای عملکرد دانه)

<table>
<thead>
<tr>
<th>N_0</th>
<th>N_{30}</th>
<th>N_{60}</th>
<th>N_{90}</th>
<th>N_{120}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{133%} (S133)$</td>
<td>2772</td>
<td>2742</td>
<td>2772</td>
<td>2772</td>
</tr>
<tr>
<td>$I_{66%} (S266)$</td>
<td>2792</td>
<td>2762</td>
<td>2792</td>
<td>2792</td>
</tr>
<tr>
<td>$I_{100%} (P)$</td>
<td>2772</td>
<td>2772</td>
<td>2772</td>
<td>2772</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$I_{60%}$</th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>STI</th>
<th>HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1387</td>
<td>1911</td>
<td>1971</td>
<td>2049</td>
<td>2118</td>
<td>2187</td>
</tr>
</tbody>
</table>

$$GMP = \left(\frac{Y_g}{Y_p}\right)^{0.5}$$

$$TOL = Y_g - Y_p$$

$$MP = \frac{Y_g + Y_p}{2}$$

$$STI = \frac{Y_g \times Y_p}{\left(\frac{Y_p}{2}\right)^2}$$

$$HM = \frac{2 \times Y_g \times Y_p}{Y_g + Y_p}$$

$$Y_p = 2951 \quad Y_{23} = 3821 \quad Y_{13} = 5669 \quad Y_{P13} = 3515 \quad Y_{P23} = 3135$$

مibili (Spike.m-2)

$$TOL = Y_g - Y_p$$

$$MP = \frac{Y_g + Y_p}{2}$$

$$STI = \frac{Y_g \times Y_p}{\left(\frac{Y_p}{2}\right)^2}$$

$$HM = \frac{2 \times Y_g \times Y_p}{Y_g + Y_p}$$

www.SID.ir
نتایج و بحث

كاربردها رمی آبیر شرایط دیم توصیه نمی‌شود لذا بر اساس میتوسط داده‌های دو تحقیق و تیمارهای آبیاری (100% آب) با سطح پهن تنچ و دو سطح تنچ درصد (100%) و سطح تنچ درصد (133%) و سطح نیتروژن، شاخص‌های محاسبه شده به شکل پدید آمده است که در جدول 1 و 2 مشاهده می‌شود.

مقادیر بیشتری نشان دهنده پیامدهای نیتروژن، میانگین نسبی برهنگی در این سلسله بیشتر دارد و از یک نگاه نشان می‌دهد که مصرف بیشتری شاخص‌های یاد شده در جدول 1 و 2 مشاهده می‌شود.

به استثنای جدول 1، در جدول 2 این الگو گزارش می‌شود.

جدول 2- پره‌وری آب و شاخص‌های محاسبه شده در میادین مختلف نیتروژن (بر مبنای پره‌وری آب

<table>
<thead>
<tr>
<th></th>
<th>N20</th>
<th>N50</th>
<th>N60</th>
<th>N60</th>
<th>N90</th>
<th>N120</th>
</tr>
</thead>
<tbody>
<tr>
<td>I13% (S123)</td>
<td>2/70</td>
<td>2/47</td>
<td>2/77</td>
<td>2/77</td>
<td>2/77</td>
<td>2/77</td>
</tr>
<tr>
<td>I66% (S252)</td>
<td>2/70</td>
<td>2/61</td>
<td>2/76</td>
<td>2/76</td>
<td>2/76</td>
<td>2/76</td>
</tr>
<tr>
<td>I100% (P)</td>
<td>2/91</td>
<td>2/91</td>
<td>2/76</td>
<td>2/76</td>
<td>2/76</td>
<td>2/76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TOL</th>
<th>MP</th>
<th>GMP</th>
<th>STI</th>
<th>HM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
<td>1/11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I66%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/77</td>
<td>-/69</td>
<td>-/69</td>
</tr>
<tr>
<td>1/77</td>
<td>-/69</td>
<td>-/69</td>
</tr>
<tr>
<td>1/77</td>
<td>-/69</td>
<td>-/69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1/77</th>
<th>1/77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/77</td>
<td>1/77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1/77</th>
<th>1/77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/77</td>
<td>1/77</td>
</tr>
</tbody>
</table>
ریاضیهای عمومی عمکرک دانه با اجرای آن

جدول ۳- ضایعه همبستگی عمکرک دانه با اجرای آن

<table>
<thead>
<tr>
<th>بارده</th>
<th>عمکرک</th>
<th>نهایی</th>
<th>پایداری</th>
<th>ارتفاع</th>
<th>کاه و کلش</th>
<th>وزن هزار دانه</th>
<th>تعداد سلسله</th>
<th>میزان</th>
<th>عمکرک دانه</th>
<th>کاه و کلش</th>
<th>وزن هزار دانه</th>
<th>تعداد سلسله</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارده</td>
<td>0.947</td>
<td>0.955</td>
<td>0.943</td>
<td>0.943</td>
<td>0.941</td>
<td>0.943</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
</tr>
<tr>
<td>بارده</td>
<td>0.947</td>
<td>0.955</td>
<td>0.943</td>
<td>0.943</td>
<td>0.941</td>
<td>0.943</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
</tr>
<tr>
<td>بارده</td>
<td>0.947</td>
<td>0.955</td>
<td>0.943</td>
<td>0.943</td>
<td>0.941</td>
<td>0.943</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
<td>0.875</td>
<td>0.962</td>
<td>0.943</td>
</tr>
</tbody>
</table>

** به ترتیب عدم وجود اختلاف معنی‌دار و معنی‌دار در سطح احتمال ۱% درصد یکی از میزان.
جدول 4- تفکیک ضرایب همبستگی صفات موثر بر عملکرد دانش گدام به آتیر مستقیم و غیر مستقیم از طریق تجزیه علیت

<table>
<thead>
<tr>
<th>ضرایب همبستگی (r)</th>
<th>اثر غیر مستقیم</th>
<th>عملکرد دانش (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاد و کش (1)</td>
<td>P₁ * r₁ > P₂ * r₂ > P₃ * r₃ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>ارتفاع بوته (2)</td>
<td>P₂ * r₂ > P₁ * r₁ > P₃ * r₃ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>وزن هزار دانه (3)</td>
<td>P₃ * r₃ > P₂ * r₂ > P₁ * r₁ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>تعادل سلنی در متر مربع (4)</td>
<td>P₄ * r₄ > P₃ * r₃ > P₂ * r₂ > P₁ * r₁ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>تعادل دانه در سیلبیا (5)</td>
<td>P₅ * r₅ > P₄ * r₄ > P₃ * r₃ > P₂ * r₂ > P₁ * r₁</td>
<td>r₅</td>
</tr>
</tbody>
</table>

R = 0.986
R² = 0.972
R²(adj) = 0.968

جدول 5- تفکیک ضرایب همبستگی صفات موثر بر عملکرد دانش به آتیر مستقیم و غیر مستقیم

<table>
<thead>
<tr>
<th>ضرایب همبستگی (r)</th>
<th>اثر غیر مستقیم</th>
<th>عملکرد دانش (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>کاد و کش (1)</td>
<td>P₁ * r₁ > P₂ * r₂ > P₃ * r₃ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>ارتفاع بوته (2)</td>
<td>P₂ * r₂ > P₁ * r₁ > P₃ * r₃ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>وزن هزار دانه (3)</td>
<td>P₃ * r₃ > P₂ * r₂ > P₁ * r₁ > P₄ * r₄ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>تعادل سلنی در متر مربع (4)</td>
<td>P₄ * r₄ > P₃ * r₃ > P₂ * r₂ > P₁ * r₁ > P₅ * r₅</td>
<td>r₁</td>
</tr>
<tr>
<td>تعادل دانه در سیلبیا (5)</td>
<td>P₅ * r₅ > P₄ * r₄ > P₃ * r₃ > P₂ * r₂ > P₁ * r₁</td>
<td>r₅</td>
</tr>
</tbody>
</table>

R = 0.986
R² = 0.972
R²(adj) = 0.968

(40 اثر مستقیم تعداد دانش در سیلبیا با مرتبة 1 تا 5 است.)

R = 0.986
R² = 0.972
R²(adj) = 0.968

(40 اثر مستقیم تعداد دانش در سیلبیا با مرتبة 1 تا 5 است.)
نتیجه‌گیری

بر اساس تجربه به دست آمده در این تحقیق، سطح تنش در سیستم یک‌پایه کامل و ۹۰ کلوپ در فکه نیتروژن خالص از نظر شاخص‌های تنش به‌شکل شاخص تنش (TOL)، شاخص پهلوپستو (MIP)، شاخص پهلوپستو (GM) و میانگین هندسی پهلوپستو (HM) به‌عنوان نسبت به دیگر تیماره برتری دارد. بنابراین یک‌پایه دانه با صفات مورد مطالعه (کاه و کلیک) معمول به‌طور مناسب به‌طور مربوط به تعداد دندانی در متر مربع و تعداد دندانی در سیستم ایست. این نتایج می‌تواند مورد توجه و استفاده مطالعات بنزداید قرار گیرد.

سیاست‌گزاری

این مطالعه مسترک از نظر تحقیقاتی شماره ۱۳۳۷-۹۸ می‌تواند که با استراتژی و امکانات موسعه تحقیقات کشاورزی دیم اجرای کرد. بین دویل و شکری و قدردانی می‌شود.

منابع

۱- احمدی، ع. و. غ. و. سی‌وی صحرا. ۱۳۸۲. روابط بین شاخص‌های رشد، تنش و بیماری‌های مختلف ایران در شرایط دانه و عدم نشان‌دهنده مصالحه دانشگاه علوم کشاورزی ایران، ۱۳۸۲-۱۳۸۰.
۲- آقایی‌سرازی، م. ۱۳۸۷. تجزیه‌ی ارزیابی و تحقیجه‌ی عملکرد و صفات واژه‌نامه تعداد از آنزیم‌های شدید، پایان‌نامه کارشناسی ارشد، دانشگاه کشاورزی تبریز.
۳- امام‌جوو، ع. و. ۱۳۸۷. ارزیابی شاخص‌های تنش به‌عنوان بیکاری که در تحلیل سازگاری در نبوش‌های ایران. پاپد-پک. ۱۳۸۷-۱۳۸۰.
۴- یاپان‌کاران، راه‌انداز دانشگاه کشاورزی ایران. ۱۳۸۷-۱۳۸۰.
۵- اهداپور، ب. و. نوروحشیدی و. وا. ۱۳۸۷. حساسیتی محاسبات و تجزیه‌ی همبستگی عملکرد دانه و اجزای آن در آزمایشگاه‌های (دوره).
۶- طرح‌های خوشه‌بندی در شرایط مسئو میانه‌سازاری، پایان‌نامه کارشناسی ارشد، دانشگاه هشتم جهان اسلام، جلد: ۱۳۸۷-۱۳۸۰.
۷- طرح‌های خوشه‌بندی در شرایط مسئو میانه‌سازاری، پایان‌نامه کارشناسی ارشد، دانشگاه هشتم جهان اسلام، جلد: ۱۳۸۷-۱۳۸۰.
۸- تکلیف، غ. ۱۳۸۷. اثر مقایسه‌ی دوای تکمیلی و نیتروژن بر عملکرد دانه و اجزای عملکرد دانه در دو سالیان، مجله مهندسین، مجلهٔ آب و برق، جلد: ۱۳۸۷-۱۳۸۰.
۹- تکلیف، غ. ۱۳۸۷. اثر مقایسه‌ی دوای تکمیلی و نیتروژن بر عملکرد دانه و اجزای عملکرد دانه در دو سالیان، مجله مهندسین، مجلهٔ آب و برق، جلد: ۱۳۸۷-۱۳۸۰.
بررسی ضرایب همبستگی صفات، تجزیه علیت و شاخه‌هاي تحلیل به خشکی...

205

۱۰- جفری، غ. 1370. بررسی عملکرد و سایر خصوصیات زراعی 16 روند چیزی و با خاتم. پایان نامه کارشناسی ارشد. دانشکده کشاورزی

۱۱- حسینی، ط. و. و. سید، و. م. م. 1380. مطالعه همبستگی خصوصیات فیزیولوژیک ده زنوبیون کندم با عملکرد دانه از طریق تجزیه

۱۲- خیابانی، ح. 1372. بررسی تثبیت در خشکی، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه آزاد اسلامی، 2013.

۱۳- رادمهر، م. 1367. بررسی تثبیت در خشکی، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه آزاد اسلامی، 2013.

۱۴- سرخساوی، غ. و. کوچکی. 1374. جهانی فیزیولوژیک زراعی دم (تجره)، انتشارات جهان دانشگاهی مشهد، 413 ص.

۱۵- منیچی، ح. و. و. م. 1372. بررسی تثبیت در خشکی، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه آزاد اسلامی، 2013.

۱۶- سیاواشی، غ. و. ا. هاشمی، ز. ف. و. غ. کوچکی. 1377. بررسی عملکرد دام و محققان همبستگی برخی خصوصیات مصرف‌زایی و فیزیولوژیک

۱۷- عینالی، غ. و. م. 1380. ارزیابی زنوبیون هنگ نان از لحاظ تحلیل به شاخه، مجله

۱۸- فرشادی، غ. و. ز. م. 1380. ارزیابی شرایط در زراعی در اندازه‌های نخود. مجله علمی کشاورزی ایران، 2013.

۱۹- کارگر، س. غ. و. م. 1383. بررسی شرایط در زراعی و جهان، پ. 1383. ارزیابی شرایط در زراعی در اندازه‌های نخود. مجله علمی کشاورزی ایران، 2013.

۲۰- کوچکی، غ. و. ج. و. و. ا. 1387. شناخت بیشتر تولید محصولات زراعی، انتشارات دانشگاه مشهد.

۲۱- کوچکی، غ. و. ج. و. و. ا. 1374. شناخت بیشتر تولید محصولات زراعی، انتشارات دانشگاه مشهد.

۲۲- محبی، س. و. 1378. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۳- محبی، س. و. 1377. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۴- محبی، س. و. 1380. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۵- نامه، غ. و. و. س. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۶- نامه، غ. و. و. س. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۷- منیچی، غ. و. م. و. خ. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۸- محبی، س. و. و. س. و. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۲۹- محبی، س. و. و. س. و. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۳۰- محبی، س. و. و. س. و. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۳۱- نامه، غ. و. م. و. خ. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۳۲- محبی، س. و. و. س. و. و. و. ا. م. 1382. ارزیابی خصوصیات فیزیولوژیک، زائر و کاربرد نمایی، منابع انتشارات و فهم. دانشگاه مشهد، 121 ص.

۳۳- هاشمی، ز. ف. و. غ. کوچکی. 1371. فناوری عملکرد گیاهان زراعی (تیمه‌های جهانی). انتشارات جهان دانشگاهی مشهد.

۳۴- سیاواشی، غ. و. ا. هاشمی، ز. ف. و. غ. کوچکی. 1372. بررسی عملکرد گیاهان زراعی (تیمه‌های جهانی). انتشارات جهان دانشگاهی مشهد.
38- CIMMYT wheat production, agronomy. 1991. Diagnosing factors limiting productivity, in wheat production, the wheat plants system.
46- James, R.C., and J.V. Roger. 1991. Wheat heat management, APS press the American phytopathological experimentation design and analysis, John Willy and Sons.