Locating Large Water Pipelines

Using Arc-GIS Software

M. Attari¹, A. Khashei Siuki², S. Asgharzadeh Manzary³, M. Mojarad⁴

1. PhD Student, Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashad, Mashad, Iran
2. Assoc. Prof., Department of Sciences and Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran
3. MSc in Passive Defense, Department of Passive Defense, Faculty of Emergency Management, Malek Ashtar University of Technology, Tehran, Iran
4. MSc in Water Engineering, Faculty of Agriculture, University of Urmia, Iran

To cite this article:

Abstract

Water Pipe Lines are the lines that take water from different resources and transfer it to drinking needed nodes, industry or agriculture. Because of the intense shortage of water resources especially in the eastern and central regions of our country, in recent years some plans have been proposed for water transferring among basins. These projects not only have led to considerable social conflict in the area that these project have been done in, but also have caused some subversive acts along the pipe lines and dependent installation. So finding suitable location for pipe lines from the passive defense point of view will be very important. In this research a method for finding suitable location for great pipe lines according to different criteria such as privacy, access, military, economic, population, geology, geomorphology, climate and hydrology is introduced. Each criterion is classified to several subgroups. So all the subgroups are done quantification in software of Arc-GIS9.3. Then with super-position of above layers, the planed area and high risk places are coloured and determined on the map. The results show that the route which has the best access and the least intersection with Faults, agricultural areas, rivers and gas pipe lines with 374 kilometers length are selected as the best options.

Keywords: Location, Water Conveyance Lines, Zoning of the Area, Transfer of Water Between the Basins.
مکان‌بایی خطوط بزرگ انتقال آب با استفاده از Arc-GIS

محمدرضا عطاری، عباس خاشقی سیویک، سید اصغرزاده منظوری، مصطفی مجدّد

1- دانشجوی دکتران آب و سازه‌های هیدروپلیک، گروه عمران، دانشگاه مهندسی خوزستان
2- دانشیار، گروه مهندسی آب و فاضلاب، دانشگاه شیراز، ایران
3- کارشناس ارشد پانال‌های غیرعامل، گروه مهندسی حرقه، دانشگاه آینه و پانال‌های غیرعامل، شیراز، ایران
4- کارشناس آذردری، گروه آب و فاضلاب، دانشگاه شیراز، ایران

Doi: 10.22093/wwj.2018.1000955.2506

چکیده
خطوط بزرگ انتقال آب، خطوط لوله‌های هستند که آب را از جاهای منابع سطحی نیز رودخانه‌ها و یا از محل سددها برداشته و به گردش نیاز تربیت، صنعت، کشاورزی و سایر مکان‌های کشاورزی می‌کند. به همکاری کمک‌های این امکانات بهبود و رونق‌های مصرفی آب، منابع اولیه از منابع افتکاری، راه‌های اجتناب از برداشت آب و همچنین باعث بهبود عامل حمایتی تأثیراتی و کمبودیاست. در نتیجه، مکان‌بایی خطوط انتقال از منظر بدافتاد غیرعامل از اهمیت ویژه‌ای برخوردار است. در این پژوهش به معرفی روشهای مکان‌بایی خطوط بزرگ انتقال با در نظر گرفتن شاخص‌های جرم‌زاری، تلفات، گرمایی، نرخ شیمیایی، نرخ رسوبی و قابل‌یابی و اقلیمی و هیدرولوژی پرداخته شد. هر کدام از شاخص‌ها به جدید ارزیابی طبقه‌بندی شد. در این اساس کلیه زیرشاخه‌ها در کمی‌سازی شدن در نهایت با تریم‌یکسیه به‌پایه منطقه‌ای انتخاب می‌شود. انتخاب آب بین حوضه‌های

کلیدواژه‌های کلیدی: مکان‌بایی، خطوط انتقال آب، پهن‌بندی منطقه، انتخاب آب بین حوضه‌های

1- مقدمه

وجود منابع آب اهمیت، کمپود بارش و توزیع بیشتر این منابع در به‌کارگیری شیمیایی و غربی کشور سبب پرورش مسائل کم‌آبی در به‌کارگیری شیمیایی و شرایط واقعی بوده که این آمر از افراد میان نامنی در مناطق شرکت مؤثر بوده است. با توجه به افت سطح آب‌های زیرزمینی به‌دلیل پرداختن

Journal of Water and Wastewater
Vol. 31, No. 1, 2020

www.SID.ir
دبکاری/کلی بر اساس نرخ بر روی GIS با دنبال کردنی یک نیروگاه 
فیزیکی و اقتصادی در یک منطقه 21 هکتاری و مکانیابی به 
دوام زمان در ایالت ورمونت آمریکا پرداختند. (Hendrix and 
Buckley, 1992)

پس از آن این کار برای شهرهای نظیر رانی و ایپیدان تجدیدی 
توسعه پژوهش‌های آنگار شماره 131-116-12116 (آین‌نامه ضوابط 
فنا پدیده، عیان‌علائم در مکان‌پایی و خطوط انتقال آب) نحوه 
مکان‌پایی خطوط انتقال آب مورد بررسی قرار گرفت (2011- 
1116، 2012). برای این کار ابتدا به معرفی شاخص‌ها و 
زیرشاخه‌ها مربوط به مکان‌پایی خطوط انتقال اشاره شد. سپس 
برای هر کدام از زیرشاخه‌ها یک شاخص به‌نام GIS نمود. این GIS به تنهایی با 
برهم نهی لایه‌ای یا فیلتر در منطقه طرح شاخص‌ها به‌جوار پرداختند. این 
آسایش، به‌طور نسبی به نهایت پیش‌نهایت، انتقال خطوط 
نتیجه در سال‌های اخیر به‌نظر می‌رسد. در تحقیق ArcGIS 
پیش‌نشده روش‌های آنگار فرضه است. برای این Arc-GIS به 
روش‌های ارائه به‌نام به‌نام کمک به کاهش اثرات کاهش‌رسانی در 
نگاهی طرح محور مبتنی بر 
نیست. به‌نام به‌نام به‌نام ArcGIS 
اعمال بسیاری از به‌نام به‌نام ArcGIS 
مکان‌پایی پیاده‌ریزی دیده شد، برای به‌نام به‌نام دیگر 
Moosavi, 2013) 
نگه داشته می‌باشد. 

پیش‌ترک و پیش‌گیری از بررسی 
Bhasani, 2012) 
یک نیروگاه می‌تواند به‌نام به‌نام ArcGIS 
(Givechi and 
Attar, 2012) 
همچنین مکان‌پایی مربوط به‌نام به‌نام ArcGIS 
www.SID.ir
۲-۱- تنوعی و محاسبات
در لایه‌های GIS منطقه طرح کم‌سازی می‌شود. به‌عنوان مثال چهار نمونه از این زیرشاخه‌ها و نحوه کم‌سازی آن‌ها در ادامه ذکر شده است.

۲-۲- فاصله از معادن
در شاخه حریم، یکی از زیرشاخه‌ها فاصله از معادن است. عدم رعایت حریم معادن و مابق آن‌ها، احتمال تأخیر قرار گرفتن خط در اثر عملیات یا خرابکاری‌های آن سازه را افزایش می‌دهد. همچنین به‌عنوان واحد استفاده از معادن و منابع زیرزمینی

جدول ۱- معنی‌های برای فاصله از معادن و منابع زیرزمینی

<table>
<thead>
<tr>
<th>Score</th>
<th>Distance from mines and under ground resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Less than 1 meter</td>
</tr>
<tr>
<td>7</td>
<td>Between 1 and 50 meters</td>
</tr>
<tr>
<td>5</td>
<td>Between 50 and 500 meters</td>
</tr>
<tr>
<td>3</td>
<td>Between 500 and 5000 meters</td>
</tr>
<tr>
<td>1</td>
<td>More than 5000 meters</td>
</tr>
</tbody>
</table>

مجله آب و فاضلاب
1399/13/1 سال
Vol. 31, No. 1, 2020
www.SID.ir
۳- نتایج و بحث
پس از کمیسیون و اجماع لاک پارای که زیرخاکیهای معرفی شده در این نامه برای کسب دسترسی به GIS، در تفاوت و تغییرات ارگندهایی در میزان خطر هر بخش از آن مطالبی با شکل ۲ به دست آمد.

جدول ۲- معيارهای کمیسیون دسترسی به داده و راداهم

<table>
<thead>
<tr>
<th>شاخص (اتراف ارگنده)</th>
<th>ردیف</th>
<th>میزان</th>
<th>نمره</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهشت به‌همراه و گسترش</td>
<td>۱</td>
<td>کم</td>
<td>۱</td>
</tr>
<tr>
<td>بین ۱ و ۲</td>
<td>۲</td>
<td>غیر کم</td>
<td>۳</td>
</tr>
<tr>
<td>بین ۲ و ۳</td>
<td>۳</td>
<td>اول</td>
<td>۵</td>
</tr>
<tr>
<td>بین ۳ و ۴</td>
<td>۴</td>
<td>نیازمند</td>
<td>۷</td>
</tr>
<tr>
<td>بیش از ۴</td>
<td>۵</td>
<td>نیازمند به جلوگیری و راداهم</td>
<td>۹</td>
</tr>
</tbody>
</table>

Table 2. Introducing criteria for access to the road and rail

<table>
<thead>
<tr>
<th>ردیف</th>
<th>میزان</th>
<th>نمره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>بهشت</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>بین ۱ و ۲</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>بین ۲ و ۳</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>بین ۳ و ۴</td>
<td>۷</td>
</tr>
<tr>
<td>۵</td>
<td>بیش از ۴</td>
<td>۹</td>
</tr>
</tbody>
</table>

Table 3. Introducing criteria for distance from fault

<table>
<thead>
<tr>
<th>ردیف</th>
<th>میزان</th>
<th>نمره</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>بهشت</td>
<td>۱</td>
</tr>
<tr>
<td>۲</td>
<td>بین ۱ و ۲</td>
<td>۳</td>
</tr>
<tr>
<td>۳</td>
<td>بین ۲ و ۳</td>
<td>۵</td>
</tr>
<tr>
<td>۴</td>
<td>بین ۳ و ۴</td>
<td>۷</td>
</tr>
<tr>
<td>۵</td>
<td>بیش از ۴</td>
<td>۹</td>
</tr>
</tbody>
</table>
در این حالت ریسک هر یک خش خطر لوله در طول آن قسمت ضربه شده و مجموع این مقدار بر طول کل مسیر تقسیم می‌شود. روش دیگر یا باید تحلیل دقیق انتخاب بزرگی برتر کننده است که مسیری که کمترین خطر از نقاط با خطر بالا را داشته باشد، به عنوان خطر بالایی ریسک شود. در این حالت نیاز به تعیین یک میزان
برای منطقه به عنوان ریسک بالا است.

در آین نامه مکان‌یابی خطوط انتقال به صورت مستقیم می‌باشد و با وجود بودن مقدار ریسک را باید نمی‌کنند و با توجه به عدم وجود کارایی مشابه در این پژوهش مقدار ریسک در پنج کلاس مختلف طبقه‌بندی شده.

با بررسی لایه‌های مختلف، حداکثر مقدار ریسک در منطقه به بیش از 300 رسید. با این حال، ریسک حداکثر در منطقه این محدوده به 5 بانه تقسیم شده که طول هر بانه برای 40 است. خشکی در منطقه کلاس 4 و 5 قرار می‌گیرد. به علت
منطقه با بهتر خطر بالا مشخص در کلاس 1 و 2 قرار دارد در منطقه با بهتر ریسک کم واقع شده‌اند. مناطقی که دارای
ریسک بالاتر از 300 بودن در کلاس 4 و 5 قرار می‌گیرند و در ترتیب
به عنوان منطقه با خطر بالا در نقشه نظر گرفته شده.

در این حالت نیاز به ارائه یک نمودار عملی مکان یابی این خطوط پرداخته شد.

در این حالت نیاز به ارائه یک نمودار عملی مکان یابی این خطوط پرداخته شد.

References

Bakhshizadeh, M. 2012. Socioeconomic problems paused by water transfer between areas (Case Study: Paradise Water Transportation to Zayandeerood). *National Conference on Inter Basin Water Transfer*, Shahrkord, Iran. (In Persian)


