لینک های مفید

عضویت در خبرنامه

کارگاه‌های آموزشی

سرویس ترجمه تخصصی STRS

فیلم‌های آموزشی

بلاگ

مرکز اطلاعات علمی

سرویس‌های ویژه
تحلیل سیستم‌های بهره‌برداری از منابع آب در حوضه آب‌ریز با روشنی سیستم

سید غلام‌رضا اردشیری‌چی، محمد تاج‌ری‌ی

(دریافت ۸/۱/۲۰۰۶، پذیرش ۹/۱/۲۰۰۷)

چکیده

در یک حوضه آب‌ریز، سیستم‌های مختلف طبیعی و انسانی وجود دارد که در اندرکنش با یکدیگرند. در صدر مسیر چانیاب، آب در سطح حوضه آب‌ریز، این وابستگی، اثر فضاهای وابسته و پیوسته در منابع آب در حوضه آب‌ریز، حفظ و بهره‌برداری که قابل دسترس، این وابستگی، دست دارند. مدل وابستگی، اینهای جدید، در مدیریت منابع آبی در سطح حوضه آب‌ریز، برای این موانع، گر، کاربرد و کاربرد های آب در نظر گرفته شود، سیستم‌های مختلف توسعه، بهره‌برداری و پیوستگی برای یک چانیاب شده و مناسب‌ترین سیستم‌های منابع همه کاربردها و اهداف توسعه، ارضا. کنن، انتخاب شود. در این تحقیق، سیستم‌های توسعه و بهره‌برداری منابع آب در سطح حوضه آب‌ریز رودخانه ای، جایی در حوضه آب‌ریز، منطقه دریاچه و آب‌ترین آب برای بررسی می‌شود. برای این منظره، حضور و بهره‌برداری آبی آبی راه‌های توسعه و بهره‌برداری از روش‌های نسبتی قابل سازی و پیام‌های بررسی می‌باشد، سیستم ARMA(1,1) تولید شده و برای آب دریاچه، بررسی با استفاده گرفته.

واژه‌های کلیدی: پویاپی سیستم، توسعه منابع آب، سیستم‌های، سیستم‌های بهره‌برداری، حوضه رودخانه.

A System Dynamics- Based Analysis of Operation Policies for Water Resources at River Basin Scale

Saeed Golian¹ Ahmad Abrishamchi² Massoud Tajrishy³

(Received Jan. 31, 2006 Accepted Aug. 4, 2007)

Abstract

There are many natural and human subsystems in a watershed with their special interrelationships. These interrelationships must be duly considered for the integrated and comprehensive management of the water resources in a water basin. One example of such interrelationships includes upstream water development and utilization projects which adversely affect downstream water quality and quantity. Within the framework of an integrated water resources management, various water resources development and operation policies must be analyzed to select the most convenient one securing the benefits of all the stakeholders in the watershed. In this study, various operation policies in the Urmia Lake Basin and the Aji Chai River Basin on the east of the lake are analyzed to determine their impacts on the water level in the lake. For this purpose, the Aji Chai Basin is subdivided into three sub-basins and the System Dynamics, which is a feedback–based object–oriented simulation approach, is used to develop the dynamic model of the region. To investigate the present scenarios, the ARMA (1, 1) model is used to generate 10 different time series for each sub-basin and the lake water level is accordingly determined for each case.

Keywords: System Dynamics, Water Resources Development, Modeling, Operation Policies at River Basin.

1. Grad. Student of Water Resources Engineering, Sharif University of Technology, s.golian@aut.ac.ir
2. Prof., Dept. of Civil Engineering, Sharif University of Technology
3. Assoc. Prof., Dept. of Civil Engineering, Sharif University of Technology

1- دانش‌آموخته کارشناسی ارشد در مهندسی عمران، آموزشگاه مهندسی عمران، دانشگاه مهندسی شریف
2- استاد دانشگاه مهندسی عمران، دانشگاه صنعتی شریف
3- دانشیار دانشگاه مهندسی عمران، دانشگاه صنعتی شریف

www.SID.ir
1- مقدمه

با در نظر گرفتن این امر که کشور ایران از جمله مناطق خشک و نیمه خشک در جهان محروم می‌باشد و تا زمانی که نوروزفرنگی به آب به عنوان وسیله‌ای غیر ضروری برای کاهش انرژی تبدیل می‌شود، بایستی از ابزارهای مدیریتی برای تخصیص بهتر آب پیش از پیش درک و قرار دادن در اندازه و اندازه‌گیری ما یک پیام پرند.

مختلف در قطعات جامع منابع آب در سطح خشک آریزونا، انرکش اجرا در روندی می‌شود و از انرکش سیستم‌ها یا باید در نظر گرفته شود.

تجزیه و تحلیل سیستم‌های مختلف برای شرایط آبی مقالات منابع خشک‌ساله، ترسی و... و ویژه‌افزایش مدیریتین متغیرهای متغیری می‌باشد. مدل‌های اپوزیسیون به درک غیر طرح و سیستم‌های ابرپارا شده است. در این مدل کاری کار در آشتی کافی با سیستم داشته باشد می‌توانند بعضی از آنها جست و سعی دند آب در ماه‌های بیشتر سیستم‌های سیستم‌ها در دارای ساختار سیستم‌ها نیستند ارزو با دست آورده ممکن است با توجه به میانگین چاپ‌های کار پراکنده است تا با در نظر گرفتن این امر که کشور ایران از جمله مناطق خشک و

2- مفاهیم اساسی در تحلیل پویا سیستم

روش تحلیل پویا سیستم با عنوان روش‌های که ابتدا در فکر سیستماتیک یافته‌های پیچیده است. اساس این روش شیوه‌های بی‌پایه‌ای پیاده و اتفاقات پیاده گرایند. در روش تحلیل پویا سیستم از جهت ابزار ذخیره و جریان بسیار مهم می‌باشد. باید بگذارید که سیستم‌ها موفق هستند در پذیرش و شفاف سیستم‌ها در استقامت و اندازه‌گیری می‌باشد. در زمان کار نداشته باشد. می‌توانند بعضی از آنها جست و سعی دند آب در ماه‌های بیشتر سیستم‌ها نیستند ارزو با دست آورده ممکن است با توجه به میانگین چاپ‌های کار پراکنده است تا با در نظر گرفتن این امر که کشور ایران از جمله مناطق خشک و
تغییرات زیایه‌ای از طرف دریاچه و همچنین ورود مقداری زیاد نمک به وسیله ترکیبات ورودی به دریاچه، شرایط فوق شور آور در دریاچه به ورود آورده است، شرایط زیاد جلیلکا شرایط مناسبی را برای تولید نوعی میگوی که در آب‌های مشابه زیست می‌کند به کمک آن، کم کرده است، همچنین دریاچه و محیط زیست اطراف آن به‌طور پیوسته تغییراتی را در آب‌های مشابه زیست می‌کند، پس درجات مختلفی از محیط زیستی ممکن به دلیل نسبت‌های زیستی و سطح‌های دیگر. سیستم‌های هبربرداری از منابع آب، ممکن است نباید از این مساحت مواد، انتقال این اثرات سیستم‌ها در محیط هبربرداری از منابع آب در این حوضه، ترکیب آب دریاچه پربری می‌گیرد و بنا بر نتایج اثرات سیستم‌های بهره‌برداری از منابع آب

1. Reference Mode
2. Flowchart
3. Causal Loop Diagrams (CLDs)
4. Stock-Flow Diagrams (SFDs)
5. Sensitivity Analysis
شیب‌سازی بهرپرداری از منابع آب حوضه آبیز

4-2-1 تعیین دقیق صورت منته
هدف این تحقیق بررسی اثرات سیستم‌های بهرپرداری از منابع آب سطحی در حوضه آبیز رودخانه آبی‌چای بر تراز آب دریاچه‌های ارومه‌ی باشند.

4-2-2 منگرهای کلیدی
منگرهای کلیدی مورد نیاز در ساخت مدل عبارتند از: دبی رودخانه آبی‌چای در محل خروجی از هر کدام از نواحی (میلیون متر مکعب در سال)، میزان صرف آب سطحی برای نیازهای کشاورزی و میزان صرف آب سطحی برای نیازهای کشاورزی و گذشت آب به رودخانه برای هر کدام، شدت تبخیر از سطح دریاچه ارومه‌ی (میلیون متر مکعب در سال)، پیش‌بینی میزان آب در دریاچه کشاورزی (متر مکعب در هکتار)، سطح زیر کشت کشاورزی در هر

۱ Vensim
۲ Stella
5- مدل سازی
چهار بخش اصلی از ساختار نهایی مدل ساخته شده در محیط نرم افزار ون سیم به قرار زیر است:
1- تعیین مدل اغلب آب و سری زمانی ذوب خروجی از هر زیر حوضه
2- تعیین آب سطحی مقرر برای نیازهای گزارشی:
3- تغییر سری زمانی (هیدرولوژی) ذوب خروجی از سد در دست احداث و تغییر
4- آب و نیاز آب موجود در دریاچه ارومیه

شکل 2: حلقه علت و معلولی دریاچه

روابط و معادلات لازم در نرم افزار ون سیم نوشته شده است.

شکل 3: حلقه علت و معلولی مخزن سد
آب خروجی از هر زیر حوضه را با در نظر گرفتن پیلای آب به درستی آورده برای زیر حوضه سرای دارم:

\[\text{River}_1(sarab) = \text{runoff}(sarab)(\text{Time}) = \text{AG-SW}(sarab) + RF \text{ SW}**\text{AG-SW}(sarab) + RF \text{ DI}**\text{DI} + \text{AG-GW1}(\text{Time}) \cdot \text{RF GW} \]

کشاورزی

ضریب بازگشت آب سطحی از مصرف کشاورزی، RF SW

\[\text{آب} \text{ زیرزمینی مورد نیاز برای مصارف کشاورزی} \]

\[\text{AG-GW1} \]

ضریب‌بردگشتن آب زیرزمینی از مصارف کشاورزی، RF GW

\[\text{آب زیرزمینی مورد نیاز برای مصارف شب پا} \text{ صنعت و DI} \]

ضریب‌پدیدگشتن آب زیرزمینی از مصارف شب و DI

\[\text{صنعت است.} \]

برای به درست آوردن تغییرات حجم و ماهیت دریچه بر حسب ارتفاع آب، نقشه‌های هیدروگرافی کل دریچه سرود نیاز است. با استفاده از تصاویر سانوآرای برایشنده، از سطح دریچه و نقشه‌های توپوگرافی نهی شده، از عکس‌های هوایی و انجام محاسبات...
جدول 1- نتایج آزمایش آب دریاچه

<table>
<thead>
<tr>
<th>R²</th>
<th>RMSE</th>
<th>APE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94</td>
<td>0.66</td>
<td>0.03</td>
</tr>
</tbody>
</table>

1- Coefficient of Determination (R²)
2- Root Mean Square Error (RMSE)
3- Average Percent Error (APE)

اسبند ۲- نیازهای آبی آبادی توسط سد ویلیار

جدول 2- نیازهای آبی آبادی توسط سد ویلیار

<table>
<thead>
<tr>
<th>آبزی پزشکی (MCM)</th>
<th>نیازهای کشاورزی (MCM)</th>
<th>شهید سرداری</th>
<th>دشت تبریز</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۲۳</td>
<td>۷/۱۱</td>
<td>۹/۴</td>
<td>۸/۴۲</td>
<td>مهربان</td>
</tr>
<tr>
<td>۱/۵۸</td>
<td></td>
<td>۳/۱۸۲</td>
<td>۳/۸۲</td>
<td>اردیبهشت</td>
</tr>
<tr>
<td>۱/۹۶</td>
<td></td>
<td>۳/۱۸۲</td>
<td>۳/۸۲</td>
<td>خرداد</td>
</tr>
<tr>
<td>۱/۸۹</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>تیر</td>
</tr>
<tr>
<td>۱/۸۸</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>مرداد</td>
</tr>
<tr>
<td>۱/۸۹</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>شهریور</td>
</tr>
<tr>
<td>۱/۸۸</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>مهر</td>
</tr>
<tr>
<td>۱/۸۸</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>آبان</td>
</tr>
<tr>
<td>۱/۹۶</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>آذر</td>
</tr>
<tr>
<td>۱/۸۹</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>دی</td>
</tr>
<tr>
<td>۱/۸۹</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>بهمن</td>
</tr>
<tr>
<td>۱/۸۹</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>اسفند</td>
</tr>
<tr>
<td>۷/۲۳</td>
<td></td>
<td>۳/۳۸۴</td>
<td>۳/۸۴</td>
<td>جمع کل</td>
</tr>
</tbody>
</table>

۱۲۸۷ شماره ۳۳- سال ۱۳۸۷
بهبودی در از سد می‌باشد.

- 2-2-6: آزمون سیاست 2 و 3.

با توجه به سطح 8 می‌توان نتیجه گرفت که با اجرای سیاست 2، حجم آب و ورودی به دریاچه در ماه‌های مختلف افزایش یافته که این افزایش به حال کاهش مصرف می‌باشد. البته همان طور که ملاحظه می‌شود تغییرات زمان ورودی دریاچه ناچیز و به طور میانگین سانتی متر است. علت این است که در ماه‌های مصرف و افزایش ورودی به دریاچه، سطح آب نیز زیاد می‌شود و تبخیر بیشتری از سطح دریاچه صورت می‌گیرد. از طرفی میزان عاداً از آب زیرزمینی نیز کم می‌گردد و به این نتیجه باید برگشت به رودخانه نیز کم می‌شود. با توجه به شکل، هر 8 اتفاق در حال حاضر می‌باشد و حداکثر حداقی در فصل سالخراش اجرای مودال 3/2 متر است. به

پیک ورودی به دریاچه در اثر سیاست 1 کمتر از دیپیک طبیعی (بدون ادغام سد) می‌باشد. با توجه به شکل 6 ترک آب دریاچه بر
اثر اجرای سیاست 1 کاهش چشمگیری نماید. داشت.

ملاحظه می‌شود که حجم ورودی به دریاچه از ابتدای ماه تا ابتدای
ماه ماه‌های گرم و خشک سال، حجم ورودی به دریاچه پس از
بهبودی در از سد پیشرفت از دیپ حالات قبل از ساخت سد می‌باشد.

در ستون آخر جدول 3 مقایسه‌ای مختلف میان دیپ‌ها اورده شده است.

که علامت منفی نشان می‌دهد، پیشرفت بدون دیپ ورودی در حال
جدول ۳- میانگین حجم ورودی به دریاچه در ماه‌های مختلف (MCM)

<table>
<thead>
<tr>
<th>ماه</th>
<th>پای باد برداری از سد</th>
<th>پای باد برداری از سد</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسفند</td>
<td>۵/۲۲</td>
<td>۵/۲۲</td>
</tr>
<tr>
<td>فروردین</td>
<td>۹/۶۸</td>
<td>۹/۶۸</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>۳/۴۳</td>
<td>۳/۴۳</td>
</tr>
<tr>
<td>خرداد</td>
<td>۹/۷۷</td>
<td>۹/۷۷</td>
</tr>
<tr>
<td>تیر</td>
<td>۹/۷۷</td>
<td>۹/۷۷</td>
</tr>
<tr>
<td>مرداد</td>
<td>۹/۷۷</td>
<td>۹/۷۷</td>
</tr>
<tr>
<td>شهریور</td>
<td>۵/۱۲</td>
<td>۵/۱۲</td>
</tr>
</tbody>
</table>

شکل ۷- میانگین حجم ورودی به دریاچه در ماه‌های مختلف سال

شکل ۸- تأثیر سیاست ۲ پر تراز آب دریاچه
جدول 4- تحلیل آماری نتایج به دست آمده از سری های زمانی مختلف

<table>
<thead>
<tr>
<th>سری زمانی</th>
<th>تراز معنی‌دار</th>
<th>تراز میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>1276.14</td>
<td>1272.54</td>
<td>1274.35</td>
</tr>
<tr>
<td>1276.19</td>
<td>1272.57</td>
<td>1274.39</td>
</tr>
<tr>
<td>1275.15</td>
<td>1272.60</td>
<td>1274.41</td>
</tr>
<tr>
<td>1276.19</td>
<td>1272.57</td>
<td>1274.39</td>
</tr>
</tbody>
</table>

عبارت دیگر اثر خشنگسالی بر تراز آپ دریاچه بسیار زیاد بوده و با سیستم‌های به‌پردازی نمی‌توان این اثر را تغییر کرد. در مرحله بعد برای رواناب هر یک از زیر حوضه‌های رودخانه آن‌چنین‌یکی 10 سری زمانی استوکاستیک 20 ساله با مدل (ARMA)1 از نرم‌افزار SAMS تولید شد. مدل‌های AR1 از دهه 60 میلادی به طور گسترده در هیبرولوژی و مباحث آب استفاده می‌شوند، در این مدل‌های مقدار یک متغیر در زمان حال به مقدار همان متغیر در زمان قبل گسترش پیش‌گیری دارد. با اضافه کردن قسمت MA به مدل‌های AR گشته پیش‌گیری دارد. با استفاده از این سری‌های زمانی

1 Autoregressive
2 Moving Average
و اعتبار سنگین مدل می‌باشد و برای این منظور باید اطلاعات کامل و دقیق از میدان معرفی آب دریاچه در دسترس باشد.

6- Fletcher, E. (1998). "The use of system dynamics as a decision water support tool for the management of scarce resources." First International Conference on New Information Technology for Decision Making in Civil Engineering, Montreal, Canada.

8- مراجع

6- Fletcher, E. (1998). "The use of system dynamics as a decision water support tool for the management of scarce resources." First International Conference on New Information Technology for Decision Making in Civil Engineering, Montreal, Canada.
