لینک های مفید

عضویت در خبرنامه

کارگاه های آموزشی

سرویس ترجمه تخصصی STRS

فیلم های آموزشی

بلاک

مرکز اطلاعات علمی

سرویس های ویژه
The Efficiency of Upflow Anaerobic Sludge Blanket (UASB) in Soft Drink Industry Wastewater Treatment

Ahmad Reza Yari1, Ali Reza Mesdaghinia2, Kazem Nadafi3, Forough Vaezi1, Morteza Safdari1, Mohammad Azizi far1

Abstract
This study was performed with the purpose of determining the efficiency of process of UASP (upflow anaerobic sludge blanket) in treating the wastewater of soft drink industry. The experiment was carried out during 8 months. The cylinder reactor dimensions were 170cm in height with 8 cm internal diameter and total capacity of 8.5 liters. The reactor was inoculated with a mixture of cow wastes, activated sludge of an industrial wastewater treatment plant at Zan Zamin factory and the sludge of an anaerobic digester. The ratio for VSS/TSS was adjusted at 0.63, and the loading rate at startup was fixed on 1 kg COD/m³ day loading rate. The Reactor was uprated and operated in mesophilic (24.8-38.2 °C) temperature. The experiments then performed in three phases. The first phase of the study was carried out in four steps, the loading rate increased up to 2 kg COD/m³ day at the constant COD concentration of 2000 mg/l. The efficiency of COD removal was found up to 78% in this phase. In the second phase, and the two steps the loading rate increased up to 2.8 kg COD m³ day with an increase of COD concentration and 2500 g/m³. At the end of this phase, the efficiency of COD removal was found to be 78.4% and equivalent to 0.329 kg COD/kg VSS.day. The detention time was 21.4 hours. At the phase and in four successive steps, the COD concentration and organic loading rate were increased to 3000 mg/l and 5 kg COD m³ day respectively. At the end of this phase, the efficiency of COD removal was 78% (equivalent to 0.389 kgCOD/kg VSS.day). The detention time at this phase was 14.3 hours and the linear velocity of wastewater flow was about 0.12 m/h. Finally, at the fourth phase of this study the pH of raw wastewater had been increased in few steps up to 10, in order to determine the effect of new conditions on efficiency of the process. The results show that the COD removal efficiency has decreased in the beginning of this phase but again increased to about 78% after adaptation had taken place. The gas generation rate was 0.15 m³/kgCOD removed. Considering the sludge formed in the top of reactor , it could be concluded that the sludge is flocculent and pellet type.

Keywords: Wastewater Treatment, Industrial Wastewater, Upflow Anaerobic Sludge Blanket (UASB), Soft Drink Industry.
مواد و روشهای فناوری‌های بی‌هویاژی و باستر یا باستر (USB) از جنس پلی اتیلن تری فنات (PET) با حجم 5/5 لیتر و قطر داخلی 8 سانتی‌متر و ارتفاع می‌رسد. این سیستم از استفاده مفید ظرفیت‌دار کسی‌ها به فناوری‌های بی‌هویاژی و باستر در بدن فرد را تثبیت می‌کند. به خصوص در آزمایشگاه‌های علمی، این سیستم با استفاده از کنترل اتوماتیک تزریق می‌شود.

مشخصات فنی USB:
- جرم: 1200 گرم
- حجم: 5 لیتر
- قطر داخلی: 8 سانتی‌متر
- ارتفاع: 170 سانتی‌متر
- نوع مواد سازنده: پلی‌اکریلیت
- ترکیب مواد سازنده: دی اکسید کربن و آب
صیغت مخلوط شد و پس از صاف کردن به مدت 15 روز سیبیک شد. مقدار 6 لیتر از این لجن برای تلیف اولیه راکتور به کار برده شد. مشخصات لجن مورد استفاده برای تلیف، در جدول 1 آورده شده است.

در این تحقیق بر خلاف مطالعات انجام شده که در شرایط رانداناژی از فاضلاب مصنوعی استفاده می‌شود، تغییر راکتور با فاضلاب طبیعی کنترل شده صورت گرفته است. فاضلاب حاصل از اتاقی قرار گرفت که دما محتوی آن به وسیله یک گرمکن الکتریکی در محدوده دماهای مورفایلکس (C-0.2-C-30) تنظیم شده بود. گاز تولیدی نیز به وسیله دستگاهی که بر اساس انتقال مایع عمل می‌کرد، اندازه‌گیری می‌شد.

به منظور تلیف اولیه راکتور، 20 لیتر لجن هضم تصفیه‌خانه فاضلاب انسانی به علاوه 5 کیلوگرم پهن تازه گاز و همچنین مقدار 5 لیتر لجن فعال تصفیه‌خانه فاضلاب صنعتی این صنعت با مقداری از فاضلاب این

جدول 1- مشخصات لجن مورد استفاده برای تلیف راکتور

<table>
<thead>
<tr>
<th>نوع</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>800 (mg/L)</td>
</tr>
<tr>
<td>VSS</td>
<td>200 (mg/L)</td>
</tr>
<tr>
<td>VSS/TSS</td>
<td>0.73</td>
</tr>
</tbody>
</table>

جدول 2- مشخصات فاضلاب صنعتی نوشابه‌سازی

<table>
<thead>
<tr>
<th>محدوده اندوزاگیری شده (mg/L)</th>
<th>متوسط اندوزاگیری شده (mg/L)</th>
<th>مشخصه فاضلاب</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COD</td>
</tr>
<tr>
<td>1500 - 2300</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>700 - 1800</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>500 - 700</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>250 - 500</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>150 - 250</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>85 - 13</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>300 - 400</td>
<td></td>
<td>Quahty (mg/L CaCO₃)</td>
</tr>
</tbody>
</table>

نمودن آن نیود. در مراحل مختلف رانداناژی و کار راکتور، از نقاط زیر نمونه‌برداری شد:
الف-میراثهای تعبیه شده بر روی بدن راکتور و ب- خروجی از سر ریز راکتور آزمایش‌های اصلی انجام شده بر روی نمونه‌ها عبارتند از:
| SCOD، COD، pH، قلیائیت، pH، QN | SCOD، COD، pH | QN |

انجام شده است. از این صنعت که به راحتی قابل تجزیه بیولوژیکی است، حاوی مقادیر زیادی کربوهیدرات، روح و چربی است. بارآلی COD این فاضلاب بعد از چربی گیری در محدوده 3000-1500 میلی گرم در لیتر متغیر است که لزوم استفاده از یک فرآیند تصفیه‌سازی می‌باشد. منابع فاضلاب این

صنایع در جدول 2 آورده شده است.

با توجه به کمبود شنیده‌ای از ملل‌نامه کود شیمیایی اوره، نسبت COD/N/P، با دسته‌ای از اتوماسیون استفاده شد [5] نظر به کفایت فسفات موجود در فاضلاب، نیازی به اضافه

www.SID.ir
نتایج و بحث

این مطالعه در چهار مرحله‌ای انجام شد. مرحله اول که مرحله راه اندازی بود، هشدار روز به طول انجامید.

1 kgCOD/m^3.day
در این مرحله بارکاردی راکتور از شرور و طی ۳۷۰ هزار و دو-g/کیلوگرم دیگری به ۲/۱ افزایش یافت. فاضلاب وردی در این مرحله‌ای به افزایش ۵۰۰۰ میلیگرم در لیتر بود.

در دوره اول مرحله راه اندازی (روژه‌های اول تا ۵۳ دنی) روزی ۱/۲۵/۴ لیتر در روز و زمان ماده هیدرولیکی ۸۸ روز و سرعت خستگی نمی‌بیند. در این روز پنج‌میلیگرم در لیتر بود که SHK در نشان دهنده اسیدی بود که با افزایش بارگذاری کاهش کارآیی زیاد محصول نیست و این نشان دهنده تغییرات در لجش به دقت بالاست (شکل ۳). در مرحله سوم گلظت فاضلاب به میلی‌گرم در لیتر افزایش یافت و در چهار دوره، مقدار کارآیی به ۲/۳ کیلوگرم در متر مربع روز به دست آمد. گلظت فاضلاب به ۱۹۸۰۰ رسیده و نسبت VSS به بیومس کل در این مرحله به ۲/۷۶ بود. با توجه به اهمیت مواد غذایی در رشد و COD/N/P
فعالیت بانکرها و برق‌پز نسبت به‌وجود از مصرف محلول اوره به فاضلاب وردی اضافه شد. مقدار فسفر افزایش گذشت در این فاضلاب، بیشتر از ۲/۵ میلی‌گرم در لیتر بود. این مقدار فسفر به عنوان استفاده از استیفیافت افزایش گرفت. در دوره چهارم مرحله راه اندازی یافته با افزایش دچ به میزان ۵/۳ لیتر در روز با راکتور به ۱۲/۵ کیلوگرم در متر مربع رسید.
جدول 3 - پارامترهای اندازه‌گیری شده در طول مرحله سوم تحقیق

<table>
<thead>
<tr>
<th>راندمان حذف (درصد)</th>
<th>VSS/TSS</th>
<th>سرعت خطا</th>
<th>پارگذاری راکتور</th>
<th>زمان مانده</th>
<th>هیدرولیکی</th>
<th>غلظت COD (mg/L)</th>
<th>روزهای بهره برداری</th>
<th>دیگر جریان (L/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63/2</td>
<td>0/74</td>
<td>0/75</td>
<td>0/275</td>
<td>0/23</td>
<td>0/3/4/5</td>
<td>0/1000</td>
<td>9</td>
<td>110-125</td>
</tr>
<tr>
<td>64/2</td>
<td>0/74</td>
<td>0/89</td>
<td>0/32</td>
<td>0/3/8</td>
<td>0/1/6</td>
<td>0/1200</td>
<td>10/8</td>
<td>128-140</td>
</tr>
<tr>
<td>65/4</td>
<td>0/75</td>
<td>0/75</td>
<td>0/38</td>
<td>0/3/4/5</td>
<td>0/1/6</td>
<td>0/1200</td>
<td>12/75</td>
<td>141-155</td>
</tr>
<tr>
<td>67</td>
<td>0/75</td>
<td>0/72</td>
<td>0/35</td>
<td>0/3/4/5</td>
<td>0/1/6</td>
<td>0/1200</td>
<td>14/16</td>
<td>156-165</td>
</tr>
</tbody>
</table>

![نمودار تغییرات COD و بار آلم تا 80 روز پس از شروع راهاندازی](image1)

![نمودار تغییرات COD در مرحله حذف و درصد حذف COD خروجی](image2)
شکل ۳- نمودار تغییرات COD خروجی و کارآیی حذف، تا ۱۰۵ روز پس از شروع رماندازی (۲۰۰۰ میلی گرم در انتِر = ورودی)

شکل ۴- نمودار تغییرات COD ورودی و خروجی و کارآیی حذف در طول دوره تحقیق (۲۵۰۰ میلی گرم در انتِر = ورودی)
نمودار تغییرات بارگذاری آمی و زمان ماند هیدرولیک در مراحل تحقیق

نمودار تغییرات pH ورودی و خروجی راکتور در طول دوره تحقیق

نمودار تغییرات COD (mg/L)
در تحقیقی که در دانشگاه صنعتی شریف انجام شده است، به مقدار تولید از فعالیت‌های صنعتی و تولیدنی در پالایشگاه‌ها توجه شده است. برای تخمین مقدار تولیدی از فعالیت‌های صنعتی، کاربرد UASB برای کاهش COD از نقاط نمونه برداری در طول تحقیق خروجی در نقاط نمونه برداری در طول تحقیق

شکل 7- نمودار تغییرات COD خروجی در نقاط نمونه برداری در طول تحقیق

نتیجه‌گیری

حقین حاضر که در روزی فعالیت‌های صنعتی تولید و توزیع فعالیت‌های صنعتی آن‌ها را به‌طور گسترده تولید از این فعالیت‌ها در تخمین فعالیت‌های صنعتی بیشتر استفاده می‌کنند. تحقیق حاصل از تحقیق در زیر خلاصه شده است:

1- استفاده از UASB در تصفیه فعالیت‌های تولیدی پیش‌تر تولیدی باعث افزایش اثرات به‌بینانه‌ی صنعتی می‌شود.
2- تولیدی از فعالیت‌های UASB تولیدی پیش‌تر تولیدی باعث افزایش اثرات به‌بینانه‌ی صنعتی می‌شود.
۵- مراجع

۱- بیانیه استفاده ترخانی، ا.ر. (۱۳۸۸). کاربرد ترکیبی بهره‌وری پست‌رلیژن با جریان رو به پلا (UASB) در تصفیه ناپلاب صنعت نوشابه‌سازی، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس.

۲- امین شهربزا، م.م. (۱۳۸۵). کاربرد ترکیبی UASB برای کاهش دار آلودگی ناپلاب کشتارگاه اصفهان، پایان نامه کارشناسی ارشد، دانشگاه علوم پزشکی اصفهان.

۵- نداییان، ک. (۱۳۷۳). بررسی عملکرد راکتور‌های دو مرحله‌ای پست‌رلیژن با جریان رو به پلا و هوازی با پست‌رلیژن، پایان نامه دکتری، دانشگاه تربیت مدرس.

لینک های مفید

عضویت در خبرنامه

کارگاه‌های آموزشی

سرویس ترجمه تخصصی STRS

فیلم‌های آموزشی

بلاگ مرکز اطلاعات علمی

سرویس‌های ویژه