Application of Titanium Compounds to Reduce Fluoride Ion in Water Resources with High Fluoride Ion Contents

Fariborz Riahi1, Mahboubeh Radgoudarzi2

Abstract
The present work describes studies on the sorption of fluoride ions from water by titanium compounds used in water treatment to reduce fluoride content in water resources. There are different methods of reducing fluoride ion in water, each associated with specific problems such as secondary contamination, environmental contamination, high costs, or the need for primary and secondary treatment. In this study, application of titanium sulfate and Metatitanic acid produced from titanium ore concentrate (ileminite) is investigated in the removal of fluoride ion and the possibility of complete purification of fluorine containing wastewater is examined to determine the optimal conditions. Metatitanic acid has a great sorption property for fluoride ion. Also titanium sulfate is a suitable and more effective material for this purpose. Efficiency of this material in reducing fluoride ion content is 99.9% and it is possible to refresh sorbet material for reuse without problems arising from Ti14 ion contamination.

Key words: Ileminite, Fluoride Ion, Metatitanic Acid,

1- Senior Engineer of Atomic Energy Organization of Iran (Isfahan Site), Nuclear Engineering Department
2- Engineer of Atomic Energy Organization of Iran (Isfahan Site), Chemical Department

---

کاربرد ترکیبات تیتانیم در کاهش یون فلوراید از منابع آب و پساب

چکیده
روش های گوناگون برای کاهش یون فلوراید وجود دارد ولی هر یک از آنها معایب خاصی دارد. از جمله این موارد ایجاد آلودگی ناتوانی، آلودگی محیطی، یکپارچگی با نیاز به تصفیه اولیه و ناتوانی مس باشند. در این تحقیق تأثیر سولفات تیتانیم و متاتیتانیک اسید حاصل از فرآوری سنتس مدفن تیتانیم (ایلیمینیت) بر جذب یون فلوراید و امکان کاهش آن در تصفیه کامل آب و پساب که دارای مقدار بالاتر
از حد مجاز فلوراید است مورد آزمایش و بررسی قرار گرفت. در جذب یون فلوراید اسید امکان فلوراید از حذف پس از پایان فلوراید برخوردار است و برای آلودگی ناتوانی که به دلیل فلوراید در PH مناسب- می‌تواند در حذف 100% درصد است. امکان ترکیب سولفات تیتانیم ماده-1 مؤثر برای این منظور تشخیص داده شد، به طوری که این ماده قادر است یون فلوراید را به میزان پایداری کاهش دهد و مکانی ندارای قابلیت ایما و استفاده مکرر نیز می‌باشد. این کاهش کاهش در این حالت در حدود 89% درصد است. در این روش، مسئله آلودگی

تیتانیم از جریمه یون تیتانیم وجود نخواهد داشت.

واژه‌های کلیدی: ایلیمینیت، یون فلوراید، متاتیتانیک اسید، سولفات تیتانیم.

Sulfate Titanium.
1- مقدمه
بعضی از این ماده‌های پیش‌تر در آپ سیمپلیکس در آزمایشگاه‌های زیست‌شناسی مورد استفاده قرار گرفته‌اند. این مکانیسم به روش‌های مختلفی مورد بررسی قرار گرفته و در پژوهش‌های مختلف مورد استفاده قرار گرفته است.

2- مواد و روش‌ها
مواد: سولفات‌های نیتریل، برومو و کلری، ایزوپلاست، استاندارد تیتانیم، وسایل طبیعی اسید، سرمگ، فلوراید و کریستال‌های بی‌کربنات.

1 Sorption
لوازم: کروماتوگراف روبن دیوینیکس مدل 1000 اسپکتروفورمتر pH-Vis، تعادل کلسیم و سایر لوازم شیشه‌ای آزمایشگاهی، همون الکتریکی و متال صافی خلاء.

روش کار

برای تهیه تیتانیم مورد نیاز از ماده معدنی ایلمنین استفاده شد. این ماده را پس از فرآوری به روش

FeTiO₃ + 2H₂SO₄ → TiOSO₄ + FeSO₄ + 2H₂O

جدول ۱- مشخصات اولیه ماده معدنی تیتانیم (ایلمنین)

<table>
<thead>
<tr>
<th>عنصر</th>
<th>فرض</th>
<th>عدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(%)</td>
<td>0/12</td>
</tr>
<tr>
<td>Ti</td>
<td>(%)</td>
<td>21/02</td>
</tr>
<tr>
<td>Na</td>
<td>(mg/L)</td>
<td>7/14</td>
</tr>
<tr>
<td>Mn</td>
<td>(%)</td>
<td>0/8/6</td>
</tr>
<tr>
<td>Mg</td>
<td>(%)</td>
<td>0/6/6</td>
</tr>
<tr>
<td>Fe</td>
<td>(%)</td>
<td>37/8</td>
</tr>
<tr>
<td>Cr</td>
<td>(mg/L)</td>
<td>1/0/4/8</td>
</tr>
<tr>
<td>Cl</td>
<td>(mg/L)</td>
<td>3/3/3/5</td>
</tr>
<tr>
<td>Ca</td>
<td>(%)</td>
<td>0/3/3</td>
</tr>
<tr>
<td>Al</td>
<td>(%)</td>
<td>0/3/3</td>
</tr>
</tbody>
</table>

جدول ۲- میزان تناخلسیها در ماده معدنی تیتانیم (ایلمنین) پس از انحلال و هیدروفسفر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>فرض</th>
<th>عدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>(mg/L)</td>
<td>58/34</td>
</tr>
<tr>
<td>Ti</td>
<td>(mg/L)</td>
<td>1/7</td>
</tr>
<tr>
<td>Na</td>
<td>(mg/L)</td>
<td>15/0</td>
</tr>
<tr>
<td>Mn</td>
<td>(mg/L)</td>
<td>2/6</td>
</tr>
<tr>
<td>Mg</td>
<td>(mg/L)</td>
<td>28/9</td>
</tr>
<tr>
<td>Fe</td>
<td>(%)</td>
<td>38/9</td>
</tr>
<tr>
<td>Cr</td>
<td>(%)</td>
<td>30/3</td>
</tr>
<tr>
<td>Cl</td>
<td>(%)</td>
<td>30/3</td>
</tr>
<tr>
<td>Ca</td>
<td>(%)</td>
<td>30/3</td>
</tr>
<tr>
<td>Al</td>
<td>(%)</td>
<td>30/3</td>
</tr>
</tbody>
</table>

جدول ۳- جدید از نمونه دارای 1000 میلی‌گرم در لیتر یون فلوراید با متالیتیک اسید در ۴ مراحل

<table>
<thead>
<tr>
<th>مرحله ۲</th>
<th>مرحله ۱</th>
<th>غلظت نهایی یون فلوراید (میلی‌گرم در لیتر)</th>
<th>GL_فینال</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۸۰</td>
<td>۲۸۰</td>
<td>GL_فینال</td>
</tr>
<tr>
<td>۲</td>
<td>۲۸۰</td>
<td>۲۸۰</td>
<td>GL_فینال</td>
</tr>
<tr>
<td>۳</td>
<td>۲۸۰</td>
<td>۲۸۰</td>
<td>GL_فینال</td>
</tr>
<tr>
<td>۴</td>
<td>۲۸۰</td>
<td>۲۸۰</td>
<td>GL_فینال</td>
</tr>
</tbody>
</table>

رالفدان حذف یون فلوراید (درصد) ۷۹/۴

(۲)

TiOSO₄ + 2H₂O → Ti(OH)₂ + H₂SO₄

جهت تهیه تیتانیوم مورد نیاز، ناحیه در آب به راحتی حل می‌شود. شرایط واکنش باعث دفع کتالیزور تا از هیدروفسفر در حین انجماب این TiOSO₄ واکنش جلوگیری شود. برای تهیه‌پذیری واکنش انحلال، آتانال تیتانیم بر روی نمونه حل شده، انجماب شد. روش اندازه‌گیری و استاندارد کمپلکس زرد رنگ Ti²⁺ با هیدروفزرین و پروپاسید و سنجش شدت رنگ آن در طول میوه ۴۰ نم استوار شد. [۱۶، ۱۷، ۱۸ و ۱۹]

تیتانیوم سولفات‌ها در محیط اسید سولفوریک غلظت‌بردار که حاوی TiOSO₄ است را به راحتی حل می‌کند. شرایط واکنش باعث خیال کتالیزور تا از هیدروفسفر در حین انجماب این TiOSO₄ واکنش جلوگیری شود. برای تهیه‌پذیری واکنش انحلال، آتانال تیتانیم بر روی نمونه حل شده، انجماب شد. روش اندازه‌گیری و استاندارد کمپلکس زرد رنگ Ti²⁺ با هیدروفزرین و پروپاسید و سنجش شدت رنگ آن در طول میوه ۴۰ نم استوار شد. [۱۶، ۱۷، ۱۸ و ۱۹]

عده‌های ناحیه موجود برای آن، کرستال‌پارسیون تحت خلاء جاداسازی شد و باقی‌مانده آهن و ناحیه‌های دیگر طی مراحل دیگری حذف شدند. سرانجام TiOSO₄، با غلظت محلول به صورت مبلوک تهیه شد. با هیدروفسفر به تیتانیوم ذیل آکسید نبود با متالیتیک اسید تهیه شد.
شده است. ملاحظه می‌شود که راندمان کاهش یافته است. فلوراکس طی یک کی‌گرم در خاک گروه 7 می‌شود. پس از یک تا ۹۰ روز تنداب کربنات ترکیب متینتیکس 
اسید غذایی به صورت رسوب قابل جدا کردن است. 

\[ TiO_2 + H_2O \rightarrow TiO_2 \cdot H_2O \cdot \text{ریخته‌ای به غلظت معین از فلوراکس شد که در آزمایش‌ها انجام شده، مقدار معینی وارد محلول‌های با غلظت معین از فلوراکس شد که پس از هیدرولیز، به عنوان از فلوراکس را جذب کرد. در تمامی آزمایش‌ها روش و ترتیب و نظارت بر pH جداسازی رسوب و توزیع محلول متینتیکس در حالت هیدروفیلی مستقیم در حالت 

\[ pH_{final} = 5 \]

جدول ۲- جذب از نمونه‌های ۱۰۰۰ میلی‌گرم در ۱ لیتر فلوراکس با متینتیکس در pH ۵

<table>
<thead>
<tr>
<th>مرحله ۲</th>
<th>pH</th>
<th>التهاب مخلوطی بان</th>
<th>غلظت نهایی فلوراکس (میلی‌گرم در لیتر)</th>
<th>راندمان حذف فلوراکس (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله ۱</td>
<td>۶۷</td>
<td>۵۲۲</td>
<td>۴۴</td>
<td>۹۵۸</td>
</tr>
<tr>
<td>مرحله ۰</td>
<td>۶۵</td>
<td>۵۵۲</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
<tr>
<td>مرحله ۴</td>
<td>۶۴</td>
<td>۵۸۵</td>
<td>۴۵</td>
<td>۹۵۵</td>
</tr>
<tr>
<td>مرحله ۶</td>
<td>۶۳</td>
<td>۵۹۵</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
</tbody>
</table>

جدول ۵- جذب از نمونه‌های ۱۰۰۰ میلی‌گرم در ۱ لیتر فلوراکس با متینتیکس در pH ۴

<table>
<thead>
<tr>
<th>مرحله ۲</th>
<th>pH</th>
<th>التهاب مخلوطی بان</th>
<th>غلظت نهایی فلوراکس (میلی‌گرم در لیتر)</th>
<th>راندمان حذف فلوراکس (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله ۱</td>
<td>۶۷</td>
<td>۵۲۲</td>
<td>۴۴</td>
<td>۹۵۸</td>
</tr>
<tr>
<td>مرحله ۰</td>
<td>۶۵</td>
<td>۵۵۲</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
<tr>
<td>مرحله ۴</td>
<td>۶۴</td>
<td>۵۸۵</td>
<td>۴۵</td>
<td>۹۵۵</td>
</tr>
<tr>
<td>مرحله ۶</td>
<td>۶۳</td>
<td>۵۹۵</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
</tbody>
</table>

پس از یک کی‌گرم در خاک گروه ۷ می‌شود. پس از یک تا ۹۰ روز تنداب کربنات ترکیب متینتیکس 
اسید غذایی به صورت رسوب قابل جدا کردن است. 

\[ TiO_2 + H_2O \rightarrow TiO_2 \cdot H_2O \cdot \text{ریخته‌ای به غلظت معین از فلوراکس شد که در آزمایش‌ها انجام شده، مقدار معینی وارد محلول‌های با غلظت معین از فلوراکس شد که پس از هیدرولیز، به عنوان از فلوراکس را جذب کرد. در تمامی آزمایش‌ها روش و ترتیب و نظارت بر pH جداسازی رسوب و توزیع محلول متینتیکس در حالت هیدروفیلی مستقیم در حالت 

\[ pH_{final} = 5 \]

جدول ۲- جذب از نمونه‌های ۱۰۰۰ میلی‌گرم در ۱ لیتر فلوراکس با متینتیکس در pH ۵

<table>
<thead>
<tr>
<th>مرحله ۲</th>
<th>pH</th>
<th>التهاب مخلوطی بان</th>
<th>غلظت نهایی فلوراکس (میلی‌گرم در لیتر)</th>
<th>راندمان حذف فلوراکس (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله ۱</td>
<td>۶۷</td>
<td>۵۲۲</td>
<td>۴۴</td>
<td>۹۵۸</td>
</tr>
<tr>
<td>مرحله ۰</td>
<td>۶۵</td>
<td>۵۵۲</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
<tr>
<td>مرحله ۴</td>
<td>۶۴</td>
<td>۵۸۵</td>
<td>۴۵</td>
<td>۹۵۵</td>
</tr>
<tr>
<td>مرحله ۶</td>
<td>۶۳</td>
<td>۵۹۵</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
</tbody>
</table>

جدول ۵- جذب از نمونه‌های ۱۰۰۰ میلی‌گرم در ۱ لیتر فلوراکس با متینتیکس در pH ۴

<table>
<thead>
<tr>
<th>مرحله ۲</th>
<th>pH</th>
<th>التهاب مخلوطی بان</th>
<th>غلظت نهایی فلوراکس (میلی‌گرم در لیتر)</th>
<th>راندمان حذف فلوراکس (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله ۱</td>
<td>۶۷</td>
<td>۵۲۲</td>
<td>۴۴</td>
<td>۹۵۸</td>
</tr>
<tr>
<td>مرحله ۰</td>
<td>۶۵</td>
<td>۵۵۲</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
<tr>
<td>مرحله ۴</td>
<td>۶۴</td>
<td>۵۸۵</td>
<td>۴۵</td>
<td>۹۵۵</td>
</tr>
<tr>
<td>مرحله ۶</td>
<td>۶۳</td>
<td>۵۹۵</td>
<td>۵۲</td>
<td>۹۶۵</td>
</tr>
</tbody>
</table>

روش‌های جداسازی و مقدار باقی مانده Ti(IV) در محلول تصفیه شده، به روش استرکتوترومتری با تشکیل‌کننده و شکل بار نیاز دارد. Ti(IV) با هیدروژن پروسیس و سنتش شده و با آن در طول موج ۴۱۰ نانومتر تغییر شد [۱۵، ۱۶، ۱۷، ۱۸، ۱۹]. 

پس از یک کی‌گرم در خاک گروه ۷ می‌شود. پس از یک تا ۹۰ روز تنداب کربنات ترکیب متینتیکس 
اسید غذایی به صورت رسوب قابل جدا کردن است. 

\[ pH_{final} = 5 \]

مصفاق کردن (جدول ۴). تصویب کامل تر بر صرف می‌گذرد بی‌شیبی از اکسو نیتیل سولفات خالص می‌شود. در واقع از تریال سولفات می‌توان برای کاهش فلوراکس نهایی آبی که دارای غلظت حدود ۱۰ میلی‌گرم در لیتر هستند استفاده کرد و آن را حدود ۱۷ میلی‌گرم در لیتر کاهش داد. همچنین برای اظهار داشته‌گاهی بی‌شیبی بین فلوراکس نیر می‌توان از متینتیکس اسید استفاده کرده با این ترکیب در 

\[ pH_{final} = 5 \]
هبودروکسیل بر اتم تیتانیم را دارا باشید. گزارش شده که در

های (OH) به ترکیب نیز قابل تهیه است. [1-2]. ولی این

ماده سود و نظر نمی‌باشد. جدول‌های 3 و 5 نشان

می‌دهد که مثابه‌تیتانیک‌ای در مورد تیتانیوم بر طور

فیات‌تلار از محلول‌های آبی تبادل می‌کند که حداکثر غلظت قابل

کاهش بیش از ۳ میلی‌گرم در لیتر در برابر ۹۹/۸ درصد

کاهش داده شده. از طرف دیگر با توجه به مصرف مقدار

کمی از تبادل گر در حجم زیاد آب، میزان تداخل‌سایر وارد

شده قابل اغماض و بسیار کمتر از حد مجاز این عامل،

است. 

از آنجا که بر روی نمونه‌های آبی که به طور مصنوعی با

افزایش نمک سدیم فلوراپید دارای تغییرات غلظت‌های نتوانسته‌ای از

ئون فلوراپید شده بودند، بررسی انجام شد. برای آزمایش‌های

انجام شده باید تیتانیک‌های مس از نمونه‌های دارای

۱۰۰۰ میلی‌گرم در لیتر فلوراپید و سایر تیتانیک‌های سولفات‌های

نمونه‌های دارای ۱۰۰ میلی‌گرم در لیتر فلوراپید استفاده

شد تا امکان سنجی انجام یافته دارد. فلوراپید پرتوزی قرار

پیدا کرده فلوراپید با مثابه‌تیتانیک اسید و با وایکش زیر تبادل

می‌شوند:


\[
\text{TiO}_{4}^{+} + (\text{OH})_{2} + \frac{1}{2} \text{F}^- \rightarrow \text{TiO}_{4}^{3-} + \text{OH}^{+}
\]

و اکتشن ۳ تا حدی که برای تعیین کامپرس کرده

هبودروکسیل پروپان شده برای تیتانیوم موارد استفاده قرار

می‌گیرد. به‌طور مثابه مثابه‌تیتانیک اسید ممکن است با

توجه به شرایط سخت، تعداد منفی‌ها از گروه‌های

جدول ۴: جداب از نمونه‌های آب دارای ۱۰ میلی‌گرم در لیتر بای‌فیب را

و حفظ pH در حد pH۰-۵ و pH۵-۶ مول

<table>
<thead>
<tr>
<th>مرحله ۱</th>
<th>مرحله ۲</th>
<th>مرحله ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰۰</td>
<td>۰۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۰۷۰</td>
<td>۰۷۰</td>
<td>۰۷۰</td>
</tr>
<tr>
<td>۰۴۰</td>
<td>۰۴۰</td>
<td>۰۴۰</td>
</tr>
<tr>
<td>۰۴۵</td>
<td>۰۴۵</td>
<td>۰۴۵</td>
</tr>
<tr>
<td>۰۵۵</td>
<td>۰۵۵</td>
<td>۰۵۵</td>
</tr>
</tbody>
</table>

توییش: ارماشیپ زیر یک نمونه دارای ۱۰ میلی‌گرم در لیتر فلوراپید، در سه مرحله با طرف غلظت مثبت به‌طور نتوانسته دارد. 


\[
\text{HOTIO} - \text{SO}_{4}^{2-} + \text{F}^- \rightarrow \text{HOTIO} - \text{SO}_{4}^{2-} + \text{F}^- + \text{H}^+
\]

و اکتشن ۴ با ۵ باعث می‌شود که غلظت بین‌ها

هبودروکسیل در محلول شدید کرده و فلوراپید سولفات‌های

\[
\text{HOTIO} - \text{SO}_{4}^{2-} + \text{F}^- \rightarrow \text{HOTIO} - \text{SO}_{4}^{2-} + \text{F}^- + \text{H}^+
\]

و اکتشن ۴ با ۵ باعث می‌شود که غلظت بین‌ها

هبودروکسیل در محلول شدید کرده و فلوراپید سولفات‌های

www.SID.ir
یون فلوراید در این حالت حدود ۰.۱ میلی گرم در لیتر (بازه ۹۹ درصد) است.
۲- در حالت تصفیه کامل، آب و پساب دارای فلوراید بالا، با آلودگی ناپایدار از ترکیبات تیتانیم مواجه نخواهد شد و فلیتر یون سولفات وارد، از حد قابل پیلن فراورده نمی‌شود.
۳- فراورده محسوس جامد حاوی تیتانیم و فلوراید، با احیا سورتینین، این امکان را فراهم می‌کند که تصفیه آب آلوده به فلوراید، بدون نیاز به دوروپری سورتینین، اشاعه شده با یون فلوراید، انجام شود.
در واقع متقا تناوی حاصل از روش سورتینین یونی می‌توان یون فلوراید را از آب و پساب، با راندمان ۹۹/۹ درصد حذف کرد. این امر همراه با ملاحظات اقتصادی تهیه مواد حاواری تیتانیم جهت مصرف در محصولات مبنا صنایع در دست توسعه شور و در عین حال قابلیت باز فراورده و استفاده مجدد آن و مهمتر از آن سلامت این روش از جهت زیست محیطی باعث می‌شود که روش مذکور بسیار مناسب و عملی باشد.

۵- کد ویژه
از ریاست و معاونت پژوهشی مخترک تحقیقات و توپلید سوخت هسته‌ای اصفهان که ما در انجام این تحقیق صمیمانه یاری نمونه‌گیری می‌گردد.

در محیط قلبی و Oxolation-Olatoin و تشذیب واکنش های محلو گروه‌های سولفات از حلال، باعث ایمنی امر می‌شود.
بنابراین متابولیک اسید تهیه شده، یون فلوراید را موتور سیستم جلبکی می‌کند و سلول سازی در حالت قابل پیلن قابلیت از آن پس از آنها با قابلیت آن که ایمن می‌شود.
در مورد H2O2 با یاد دکتر کریم که این ماده قابلیت آن را دارد که یون فلوراید را به طور کامل تریست نسبت به متابولیک اسید از محلول‌های حاوی آن یون یون جدا نمی‌لاید و در صورت نیاز به تصفیه کامل تر، می‌توان از این ترکیب استفاده نمود (جدول ۴). در واقع با
این ترکیب تصفیه نمود (جدول ۴) H2O2 حل کن که ایمن می‌شود.
لیتر در مناسب‌ترین pH باشد. با افزایش مصرف
ر اندازه نیاز یون فلوراید و همچنین 
کاهش یافته آلودگی تریست در محلول TiO2 (Na) در محیط pH final مورد تصفیه بیشتر خواهد شد، اما با این توجه داشته که مقدار بهینه برای رفع این اشکال و 
رصد pH لیتر در این

6- یتیانیم وارد به طور کامل pHfinal=۴ است و در این pH، تیتانیم وارد به طور کامل TiO2 نیاز
برای تصفیه کامل تر آب آلوده حاوی ۱۰ میلی گرم در لیتر یون فلوراید کافی است. تفاوت ۴۲۳ میلی گرم در لیتر یون سولفات وارد آب می‌شود، اما حد قابل پیلن سولفات ۵۰۰ میلی گرم در لیتر می‌باشد.

استفاده از شکل بک آب تیتانیل سولفات (TIO2) به جای ترکیب دو آبه آن (TIO2، H2O)، که به سبب نیاز به تصفیه ندارد.
گزارش شده است که در زمان‌های آلوده به 
افزایش ترکیب دو آبه ترکیب دو آبه TIO2، H2O، و تیتانیم سولفات های محلول در آب، مناسب برای استفاده جدید در تصفیه آب می‌باشد.

۱- آل آب آلوده به مقادیر زیاد یون فلوراید وی به طور مؤثر با ترکیب Ti و به صورت ترشی کامل تر با ترکیب سولفات به ترکیب کرده که می‌توان با آرازاسازی که ترکیب سولفات به ترکیب کرده که ترکیب سولفات به 

www.SID.ir
10- USSR Inventrons certificate no. 1682321, (1982).