سیمای کلی هیدرولوژی حوضه آبگیر زاینده‌رود

حمیدرضا سالیمی*

هاموندرورای راست**

(دریافت ۲۰/۷/۲۰۱۳، پذیرش ۲۵/۷/۲۰۱۴)

چکیده

در این مقاله به بررسی کلی خصوصیات هیدرولوژیکی و استفاده از آب در حوضه زاینده‌رود براساس آمار موجود در دوره پایان ساله (۱۹۸۹-۱۹۹۸) پرداخته شده است. در این راستا جریان ورودی به دریاچه سد جریان خروجی از دریاچه و آبگیرها در طول مسیر رودخانه به منظور آبیاری اراضی کشاورزی و دیگر مصارف مورد بررسی قرار گرفته و یک بیلان آب‌سنجی در سطح حوضه ارائه شده است. نتایج نشان می‌دهد که جریان‌های ورودی به دریاچه ناز آبیاری، شرب و بخش صمغی را در پایین دست‌آمیخته نموده و از یک اگور نظم تغییرات پیش‌بینی نمی‌نماید. اما ذخایر سالانه سد محدود بوده و به طوری که در طول دوره‌های خشکسالی طولانی، حوضه‌ای را از سیستم‌های تحت‌زمینی است. همچنین روند آب خروجی از سد زاینده‌رود، یک اگور قابل پیش‌بینی را به‌طور جزئی مواد سیلابی نشان می‌دهد. به‌نظر می‌رسد، اعتماد و درصد اطمینان بالایی در تأمین نیازهای آبی، در دوره تقاضاهای حداکثر وجود دارد ولی آب خروجی در ماه‌های فصل‌های دما و در پایان فصل آبیاری، دارای میزان بالاتری و با تغییرات بالا می‌باشد که در تبیین‌های دیده رودخانه کم و کمیت آب به‌ویژه در پایان رودخانه پایین می‌آید. یک بیلان آب‌سنجی در حوضهٔ مباینگی سالانه‌ای (۳۰ درصد تصمیم‌گیری دارد. میزان حجم آب برْگشتی به‌ویژه در قسمت‌های پایین دست‌آمیخته و ضروری است. به‌طور گسترده‌ای دریاچهٔ سیر، بررسی خوراکی به‌نظر می‌رسد. با فرض محدودیت‌های آب بر کیفیت باکتری‌ها در حوضهٔ آبریز زاینده‌رود، اگر امکان صرف‌جویی واقعی آب در حوضه وجود داشته باشد. می‌توان به نوسان میزان آب و اصلاح مدیریت این منابع دست یافته. از این رو در سطح‌های مزرعه، شبکه‌ها و حوضه‌ای در کالبد قابل توجهی در سرود کاربرد آب و استفاده مجدد آب ضروری است.

An Overview of the Hydrology of the Zayandeh Rud Basin, Iran

Salemi, H.R.
Esfahan Agricultural & Natural Resources Research
Murray.-Rust, H.
International Water Management Institute, Colombo, Sri Lanka

Abstract

This paper provides an overview of the hydrology and water use in the Zayandeh Rud basin based on the data available over the 11-year period 1988-1998. The inflows into Chaogan reservoir, the releases from the reservoir, and the extractions along the river for irrigation and other purposes are considered, and a rapid water balance of the basin is performed. Inflows to the Chaogan reservoir, which serves to collect and regulate the runoff from the upper catchment of the basin to better meet the downstream water requirements for irrigation, urban and industrial uses, follow a regular pattern with moderate

*عضو میانه علمی مرکز شکلات‌سازی و منابع طبیعی استان اصفهان
**عضو مؤسسه بنیان‌گذاری مدیریت منابع آب، کلمبو، سریلانکا
مقدمه
رودهانه زاینده‌رود مهم‌ترین و حیاتی‌ترین روودخانه منطقه مرکزی ایران (استان اصفهان) بیش از هر عوامل توسه‌ای نبوده است. تأثیر آب بخش صنعتی و کلیه فعالیت‌های اقتصادی گاکش، رشد جمعیت و فعالیت صنایع بزرگ موجب افزایش نطر و رقابت در حوضه زاینده‌رود شده است. در این رابطه، بخش‌بندیکی شعر به تاثیر تغییراتی که این روودخانه از نظر می‌رسد [2] جریان‌های آب در بخش‌بندیکی از طریق نشت و فرآیندهای عمومی و روایان سطحی و ماهی‌گیری در سطح مزرعه و سیستم تلقی می‌گردد با استفاده از نظر گرفته شوند. مولدن [1] یک چارچوب مشخص کاری محاسبه آب را پیشنهاد نمود که اثر دخالت یا بستر در سیستم هیدرولوژی و انکاس آن اجرای بی‌پایان آب به گروه‌های مصارف گوناگون آب تقسیم شدند [4].

در اینجا از لام انتشار داشته باشیم به صاحب‌نظری (سیکر 1991، کلر و همکاران 1999 و بری 1999) که در انتخاب با فهم و نیتی راندمان آبیاری، موضوعیتهای مطرح کردن آب تخلیه در سیستم‌ها و از دیدگاه تجاوز (تاخیر و تعرق گیاه) به سیستم آب انتقالی از ارتباط می‌دهد. آنها معتقدند افزایش گفتوگویی راندمان آبیاری در یک محل مشترکاً منطبق آب در سطح شده محور نمی‌شود. تنها افزایش راندمان تعريف شده الزاماً تاثیج بهتری نخواهد داش [16]. مثالی تاخیر بیشتر با همان مقدار انحراف آب شاکی منتظر به تخریب می‌تواند و یا تاخیر آب در اثر مصرف غیر بهره‌برداری

1 Molden
2 Seckler 1996; Keller et al., 1996; Perry 1999; 1999

www.SID.ir
ب‌دی‌های مصرفی گوناگون با کل آب موجود در حوضه متفاوت‌های

گردید. به‌منظور دست‌بادی به‌این مطلب که از آب‌چگونه استفاده‌شده و نیز دورنماه‌ی استفاده مناسب‌از

این منابع ترجیح داده می‌شود آب‌خوری برای

مصرف‌گیری که با آب موجود در حوضه متفاوت‌های

گردید [5].

این مقاله دورنماه‌ی کلی از هیدرولوژی حوضه

زاویدرود عرضه‌ی در نظر جریان‌های ورودی به دریاچه، سد،

خروجی از سد و تنظیم جریان‌های مصرفی در طول تفریز

روخوانه در منظور آب‌ویابی و سایر مصارف ارائه می‌دهد.

و جنگل‌خورانندگی مدیریت صحتی آب‌بستگی‌ها، با توجه

به نیاز مصرفی میزان آب برگشتی و بهبود مصرفی

منابع آب در حوضه آب‌زایندرود را که به هر سالانه ای‌

اجمایی، مشکلات و موانع مربوط به مدیریت و اصلاح

به‌هروزی آب را در این حوضه بسته روشی می‌سازد.

حوضه آب‌زایندرود

خصوصیت‌های

حوضه آب‌زایندرود، واقع در منطقه مركزی

ایران، حوضه کامل مسئولی است که هیچ راه خروجی

به دریا ندارد. رودخانه زاویدرود به طول 350 کیلومتر،

در امتداد تقریبی غرب-شرق در جریان‌های ماین‌دام و از

کوه‌های زاگرس در غرب استان اصفهان سرچشمه

گرفته و به بافت‌گاه کاوه‌روخون در شرق سرشناس می‌رسد. این

روخوانه آب آب‌بستگی، شرب و صنعت است و به‌کمک

از مهم‌ترین مناطق اقتصادی ایران است، تأثیری می‌کند.

مساحت کل حوضه زاویدرود حدود 41450 کیلومتر

مربع می‌باشد. البته فقط اراضی بالایدست دریاچه

زاویدرود به تأمین جریان‌های آب مصرفی می‌باشد و

محدوده‌ی پایینی سد جریان ورودی به رودخانه

نداشته و اگر هم جریان‌های بیشتر نادره و کم است.

لذا در مورد آن نمی‌توان هیچ‌گونه برنامه‌ریزی انجام

داد. جریان طبیعی رودخانه زاویدرود با انحراف آب از

تولیدان طبیعی رودخانه زاویدرود با انحراف آب از

روخوانه کوه‌های در استان چهارمحال و بختیاری سرچشمه

می‌گردد، افزایش می‌باشد. به‌هردور از تولید از

روخوانه

در سال 453 و تولید دوم از سال 1987 آغاز گردید، که

مجموع 450 میلیون متر مکعب آب در سال به‌منظور

زاویدرود مستقیم تأمین شده و تولید سوم کوهرنگ با

ظرفیت انتقال سالانه 250 میلیون متر مکعب آب، در

سال‌های آینده به بهره‌برداری خواهد رسید. ذخیره گذار

زاویدرود در چادگان به سیستم روان‌سازی بهره‌وری و

زندگی آسان و بهینه‌سازی تنظیم شده در رودخانه‌هنگامی که در طول مدت رودخانه تعداد زیادی سریز و بندی‌های انحرافی احداث شده که از

این مکان‌ها محدود شده و صورت جریان‌های تنظیم شده

به‌صورت بهره‌وری و مشترک عملکرد و بندهای انحرافی جدیدی

این مکان‌ها کمتر می‌باشد. این مکان‌ها به‌صورت

بیشتر ارتفاعات کوه‌های است که

ارتفاع آن‌ها به مدت 380 متر می‌رسد و مصرف آب در این

نواحی کم است. در این ناحیه از حوضه، جنگل‌های

طبیعی وجود دارد و به خشکی‌سازی از اراضی مرتفع

بایر می‌باشد.

قسمت‌های مرکزی و بایری دست در درز زاویدرود

شامل نواحی خشک، نیمه خشک و نیز مراتع پرشیبی

کوه‌های بوده و در زمینه‌ی دیگری از این محدوده،

dشت‌های رسوی با شیب ملایم و با بستر خشک

است که گاهاً سیلاب‌های لحظه‌ای نادار در آن

جریان می‌باید. بیشتر گاهی این قسمت‌ها، بوته و

نارنجی و کف‌رچم با تشکیلات در گونه‌بی‌سیلاب و درصد

پردرخت و فلک‌پاهای ایستاده در حال حاضر در این

روخوانه آب‌زایندرود با باتلاق‌های طبیعی و تکمیل

گاوخونه ختم می‌گردد. بیشتر محدوده‌ی این مرداد

توسط توده‌های ساخته ساختم به‌طور جغرافیایی

باتلاق محصور شده است. آب ورودی به باتلاق،

دازایی درشی در ایستاده آب‌زایندرود در رودخانه‌ای کم‌آبی به 300 فراشش می‌باشد [8].

وضعیت آب و هوا

www.SID.ir
قسمت اعظم حوضه دارای بارش سالانه‌ای کمتر از 150 میلی‌متر است. تقیب‌های این نزولات در ماه‌های سرد و زمستان همراه با حرکت جهی شرقی از شرق اروپا حادثه می‌شود و فقط در بعضی مواقع در پاییز بارش کافی روانگام مهمی در دشت‌های رسوبی ایجاد می‌گردد. اغلب روانگام‌ها از کوه‌های اطراف حوضه به خصوص رشته کوه‌های زاگرس بیشتر می‌گردد و بیشتر این جریان‌ها به صورت برف‌های ناچیز می‌باشد. بیش از ۸۹/۷٪ این بارش‌ها بر اثر ماه‌های نوامبر و مارس با میانگین سالانه ۷۰ روز بارش رخ می‌دهد که از این ۷۰ روز بارش، حدود ۵۰ روز بر برف و بقیه بارانی بوده و در زمستان‌های سرد، هفتین‌ها درجه حرارت از صفر بالاتر می‌رود و بیشتر بارش‌ها به صورت برف و برف‌پایی مانند تا فروردین ماه آوریل که درجه حرارت افزایش می‌یابد. بنابراین برف‌های بارهم در جهت بارش‌های برف‌یار در طول سال و هنگام نیاز حداکثر بخش کشاورزی کامل‌شونده است. این امر آب‌ریز را بیشتر به یک فعالیت اقتصادی کرده که در طول فروردین اساس و پایه اهمیت تاریخی اصفهان به شمار می‌آید.

توزعه آب‌ریز

میزان ۱۵۰ میلی‌متر بخشی و نیز در دشت‌های ارتفاعی در اقصی‌ترین اهواز-سرپیچی در طول سال نیز ایجاد می‌گردد. این اثر میزان بارش‌های زمستانی در زمین‌های ارتفاعی در اقصی‌ترین اهواز-سرپیچی در طول سال باید به توجه می‌باشد.
نمایش شکلهای آبیاری در موقعیت آبیاری از طریق اکتشافات رودهای

جدول 1- مشخصات اصلی شکلهای آبیاری در موقعیت آبیاری

<table>
<thead>
<tr>
<th>شیبکه های قدمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>نکوآباد - سمت راست</td>
</tr>
<tr>
<td>نکوآباد - سمت چپ</td>
</tr>
<tr>
<td>آبشار - سمت راست</td>
</tr>
<tr>
<td>آبشار - سمت چپ</td>
</tr>
<tr>
<td>زیستی</td>
</tr>
<tr>
<td>برخورد</td>
</tr>
<tr>
<td>رودخانه</td>
</tr>
<tr>
<td>مهمار</td>
</tr>
</tbody>
</table>

توضیحات:
1. تأکید کننده این مسئله است که شیبکه اصلی در جریان ورودی به دریاچه سد در محل چادگان است. این جریان ورودی به دریاچه سد در محل چادگان، یک اکتشاف سالانه را تشکیل می‌دهد (شکل 2). در اینجا، این جریان به رودخانه ماهار از ماهار تا جولای می‌رود که در اکتشاف باریکی از ماه ماهار است. هر دو رودخانه در هر اکتشاف باریکی از ماه ماهار در اکتشاف باریکی از ماه ماهار منبع آب را به صورت ماهانه و سالانه تخمین زده. این مجموع متوسط جریان‌های ورودی تقیاً ۱۸۰۰ میلیون مترمکعب است. بدهی‌های زمین‌شناسی به کمک است. جریان‌های ورودی سالانه به دریاچه سد دارای تغییرات چندانی نیست. به طوری که جریان‌های ورودی سالانه در اکتشاف باریکی از ماه ماهار است. این جریان‌های ورودی سالانه به دریاچه سد دارای تغییرات چندانی نیست. به طوری که جریان‌های ورودی سالانه در طول دوره ۱۱ سال آمار، دارای تغییراتی از ۱۱۵۳ تا ۱۱۳۵ میلیون مترمکعب با ضریب تغییرات ۲۴ درصد می‌باشد. به هر حال جریان‌های ماهانه تغییرات بزرگتری با ضریب تغییرات بین ۲۶ تا ۲۲ درصد و نشان می‌دهد. در سه ماه اوریل، ماه و ماهیانه که بالاترین متوسط ورودی حاصل می‌شود، باین ترین تغییرات در اکتشافات (ضرایب تغییرات حداکثر ۶۰ درصد) مشاهده می‌شود و طوری که در
شکل ۲- مقادیر متوسط ماهیانه ورودی به دریاچه سد زاینده رود در محل چادگان

www.SID.ir
شکل 3- احتمال تجزیه جریان‌های ورودی به مخزن سد در محل چادگان

جریان خروجی از دربای سد زایندرود

ورودی به مخزن، زمان تأخیری حدود دو ماه وجود دارد که به وضعیت بهره‌برداری از مخازن کاهش می‌یابد. شکل ۴ اینگونه قابل پیش‌بینی خروجی آب از مخازن سرد را نشان می‌دهد. در دوره‌هایی که حجم ذخیره‌های مخازن، حدود ۱۴۰۰ میلیون مترمکعب می‌باشد، خروجی‌های مخازن به‌طور بالاتری از شرایط عادی است. معمولاً برای حصول اطمینان از بازیابی بودن تراز مخزن قبل از قسمت برف‌برداری بحث و راه‌سازی‌های از ادامه آوریل تا مه و احتمالاً زودن و یکبار نیز در دسامبر انجام می‌گیرد. مجموعه‌ای از روش‌های خروجی‌ها به منظور کنترل سیلاب، مربوط به سال‌های ۱۹۸۸، ۱۹۹۲ و ۱۹۹۳ می‌باشد که حداکثر وقوع راه‌سازی در هیدرودریفر جریان و خروجی‌های‌مانگه، مبتنی بر ۲۵۰ میلیون مترمکعب ترازهای بالای بوده و در حین بارش‌های برف‌های زمستانی ممکن است به سرعت بیرون‌اند. را ممکن مناعد. شاخص ۵۰ سال ۱۳۸۲
بررسی ارتباط بین ذخیره ماهیانه و خروجی سد

نوعگرایی از نگاه ذخیره ماهیانه و وجود ذخیره سد در منطقه 5، پهلوگیری ذخیره ماهیانه در آن سد از همه نشانه‌های جدایی‌نما درباره انتقال نیفتاده است. به گونه‌ای که ذخیره سد از 1100 میلیون مترمکعب بالاتر باشد، خروجی ماهیانه حداکثر به 100 میلیون مترمکعب و در صورتی که ذخیره سد 900 میلیون مترمکعب باشد، رهاسازی آب از 125 میلیون سال ممکن است تجاوز نکند. این روابط نشان می‌دهد که ذخیره ماهیانه در مخزن کم است و رابطه دیقیقی بین ورود و خروج آب به مخزن نخواهد داشت و تقریباً همه روانه پهناور و اوایل تابستان در روزهای آخر تابستان مورد استفاده

1 Broad Band
جهانی میانگین خروجی‌ها یا ماهانه "ترمال" (به چرخان‌های خروجی کنترل سیالاب) (میلیون مترمکعب)

جدول ۲

<table>
<thead>
<tr>
<th>ماه</th>
<th>نوامبر</th>
<th>دسامبر</th>
<th>آذر</th>
<th>تیر</th>
<th>مرداد</th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>تیر</th>
<th>مرداد</th>
<th>اردیبهشت</th>
<th>خرداد</th>
<th>تیر</th>
<th>مرداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>۱۲۳۴۵</td>
<td>۶۷۸۹</td>
<td>۱۰۱۱</td>
<td>۱۲۳۴</td>
<td>۵۶۷۸</td>
<td>۹۰۱۲۳۴</td>
<td>۵۶۷۸</td>
<td>۱۰۱۱</td>
<td>۵۶۷۸</td>
<td>۹۰۱۲۳۴</td>
<td>۵۶۷۸</td>
<td>۱۰۱۱</td>
<td>۵۶۷۸</td>
</tr>
</tbody>
</table>

جهانی میانگین خروجی‌های ترانسپورت‌کننده ایرانی به میزان بیش از ۸۰ میلیون مترمکعب کاهش یافت. این افت در سیاره سیالاب ارتباط با وقایع و تحولات داخلی و خارجی داشته است.

نتایج و اثرات دربرگیری‌های شما در مورد تیتر و عناوین جریان‌های خروجی در سیالاب از دیدگاه شما، برای ا)?. با توجه به کلیه این‌ها، در سال ۱۳۹۷ به‌عنوان یک مورد از مباحث مهم بررسی نهایی اکثر این موضوعات در سیالاب‌های ایرانی مطرح شد. در این راستا، مطالعات و بررسی‌های بیشتری به‌عنوان مورد اولیه در سیالاب‌های ایرانی به‌عنوان منابع گردشگری می‌باشد.
شکل 6- میانگین ماهیان حجم جریان عبوری در طول میسر رودخانه زاینده رود یافته و در ورودی به صفر می‌رسد. البته سیلان‌های رها شده در شرایط ترسالی، شاید به این نقطه (ورننه) برسند. در واقع میانگین بده اندام‌های گیری شده (ماهیانه) در موافقت متوسط، کمتر از 1/5 می‌باشد. از طرفی در ورودی کم‌چرب آب شدیداً پاپین می‌آید که علت آن وجود نمک بی‌بیار و آلوده کننده‌های غیر کشاورزی است. به منظور درک بهتر از مقوله استفاده و تعیین درجه استفاده آب و تجزیه و تحلیل آب‌های ورودی و خروجی (بدردشت‌های آب برا ی مصارف آبیاری، صنعت، شرب) در حوضه مدنی به شکل یک بیان آبی در یک صفحه گسترده مورد استفاده قرار گرفت. [1]. در این مدل مرحله زمانی ماهیان در نظر گرفته شد و آن‌ها برای رودخانه انجام گردید. زمان پاسخ رودخانه کمتر از یک ماه فرض شده، بنابراین زمان تأخیر در جریان‌های آب، بین ماه‌ها وجود ندارد. در این مدل ماهیان به هر دوره و مراحل اندام‌های گیری شده در طول رودخانه تعیین شده‌اند و پرداشته از رودخانه فقط در دو مقاطع نیز قرار گرفته است. به منظور مصارف شریعتی و صنعتی برای هر یک بار در پیک بدردشت‌ها 5 میلیون مترمکعب در ماه

1 Reach
نمی‌توانست همه نیازهای آب در حوضه‌ها برآورده نماید، میانگین جریان آب برگشتی حدود ۱۰۰/۳ تخمین زده شده است.

شکل ۸: میزان میانگین سالانه آب برداشتی و مقدار آب برگشتی را در پنج گونه در مصور رودخانه زاینده‌رود نشان می‌دهد. مشاهده می‌شود در بازه بین کل گونه‌های (محدوده‌ای به اراضی قابل توجه تحت آبیاری و وجود دارد) میزان آب برگشتی به ۵۰/۰ می‌رسد.

برداشت‌های سالانه، به صورت خالص و ناخالص تغییرات نداشت و یا بسیار جزئی بوده است (ضربم تغییرات ۶/۹). این پایداری، گویای یکی از جریان برگشتی اساسی در ارتباط با مصرف گوگاهون آب در حوضه می‌باشد و گونه‌های آب‌رها برداشت‌شده به تنهایی

واژه برداشت‌های اشاره دارد به چنین انتخاب‌گیری شده بین تابع مورد نظر و تلفه ۱ دیگر در بالا استنم و واژه برداشت‌های ناخالص gross اشاره دارد به یک اپ برداشتی برای برآورده کردن ناخالصات متفاوت در یک یا یک مورد نظر ۲ آب برگشتی (درصد) آب استخراج خالص آب استخراج خالص ۳ آب استخراج خالص

شکل ۷: مقادیر میانگین سالانه آب‌گیرهای جریان‌های برگشتی تخمین در حوضه زاینده رود (۸۸-۸۷ و ۱۹۹۶-۹۷)

www.SID.ir
نتایج گیری
بررسی کلی هیدرولوژی و مصرف آب در حوضه آبریز زایندهرود دستاوردیهای روشن و برخی‌های را ارائه می‌دهد:

- چربی‌های سالانه ورودی به دریاچه سد زاینده‌رود در محل چادگان. یک الگوی منظم با تغییرات ناشی از نشان‌می‌دهد (ضربی تغییرات

(۱/۲۴).

- چربی‌های ماهیان تغییرات بزرگتری را با دامنه ضربی تغییرات بین ۲۰/۰ تا ۷۹/۰ نشان می‌دهند. ولی از ماه آوریل تا زوئین طی سه ماهی که میانگین چربی‌های از بالاترین حد است ضربی تغییرات کمتر از ۰/۰۳ به دست می‌آید؛ بدین مفهوم به خلاف این دوره چربی‌های قابل احتمال کاملاً با وجود دارد.

- چربی‌های قابل پیش‌بینی و قابل قبول ورودی دریاچه سد مدل‌سازی مخزن در تأمین ناچار به شرایط عادی را می‌سازد. اینه رهاسازی‌های اضطراری در مواضع سیلابی با منظور تأمین امین سد مورد نظر می‌باشد.

- مخزن سد، طریقت ذخیره قابل انتقال (Corryover Storage) چندان ندارد. تقریباً همه چربی‌های ورودی در یخ و اولین تابستان قبل از فصل سیلاب بعدها از مخزن سد آزاد می‌شود و این مسئله دریاچه و حوضه را نسبت به دوره‌های طولانی کم بارش حساس می‌سازد.
متضور نیست. به عبارت دیگر اگر ممکن بود که به یک صرفه‌جویی واقعی آب در بخش کشاورزی نایل شویم، این میزان آب صرفه‌جویی شده می‌توانست در گسترش سطح زیرکشت اراضی فاریاب با پرآورده کردن نفع‌آوری روزافزون دیگر بخش‌ها مثل آب شرب، صنعت، فضای سبز و محیط زیست مورد استفاده قرار گیرد.

سیاست‌گرایی
همکاری و حمایت سازمان‌های متعددی، به ویژه وزارت جهاد کشاورزی و وزارت نیرو، قابل تقدیر است. نویسندان این مقاله تشکر خود را از آقای مهندس اسدی کارشناس ارشد سازمان آب منطقه‌ای اصفهان و آقای مهندس امیری رئيس وقت طرح جامع کشاورزی حوضه آبی‌زاینده‌رود و پرسنل مربوطه و سرمآرخانم شیرانی نزاد تقدیم می‌دارند.

