تحلیل پدیده شکست در سدهای خاکی با توجه به مشخصات شکاف

(دریافت 7/8/83/۱۰ پذیرش ۸۳/۲/۷)

چکیده

مطالعه شکست سد مستلزم تعریف پارامترهای متغیری مانند علت شکست، نوع شکست، ابعاد شکاف ایجاد شده و زمان توسعه شکاف می باشند. پیشینی دیگر مشخصات شکاف یکی از مهم ترین مباحث برای تحلیل مسائل شکست در سدهای خاکی می باشند. پارامترهای شکاف و عیان میزان حساسیت هر کدام از آنها پیشترین تأثیر را بر امواج حاصل از شکست دارند. با بررسی این اتاق شده مطالعه شکاف ایجاد شکاف در سدهای خاکی سیلابه به کمک مناسب ارتباط مدل تعبیه گرده است. در سد خاکی سیلابه، شکاف از نوع ذوب‌نفت‌گی با شیب جابجایی (m) = 0.73 و قاعده (z) = 0.48 محاسبه شده است. زمان توسعه شکاف در این سد معادل 1/90 ساعت می باشد. با استفاده از نتایج فوق و به کمک نرم‌افزار Dam Break احتمال سد سیلابه مورد تجربه و تحلیل قرار گرفته است. تحلیل نتایج حاکی از آب گرفتگی شهر پرائشگر واقع در ۱۲ کیلومتری بهینه سد، بعد از غذشت ۳ ساعت، و تا زمان ۱۲۷۵ متری می‌باشد.

واژه‌های کلیدی: شکست سد، شکاف با گذشتگی، پدیده ایجاد لوله در سد خاکی

Dam Break Analysis of Embankment Dams Considering Breach Characteristics

Shamsaei, A. (Ph.D), Dept. of Civil Eng., Sharif Univ. of Technology Paya, M.R. (M.Sc.), Abgeer Consulting Engineers

Abstract

The study of dam's break, needs the definition of various parameters such as the break cause, its type, its dimension and the duration of breach development. The precise forecast for different aspects of the breach is one of the most important factors for analyzing it in embankment dam. The characteristics of the breach and determination of their vulnerability has the most effect on the waves resulting from dam break. Investigating, about the parameters of the breach in "Silveh" earth dam have been determined using the suitable model. In Silveh dam a trapezoid breach with side slope z=0.01m and the average base line b=80m was computed. The duration of the breaches development is 1.9 hour. Regarding the above results and the application of DAM Break software the consequences of the probable break of the dam was determined. The analysis of the results of water covering of the city of Piranshahr located 12km from silveh dam confirms that in 3 hours the water will reach the height (level) of 1425 meters.
شکاف، نوعی بازشان‌گی در سد است که در هنگام شکست سد ایجاد می‌شود. مکانیک واقعی شکست در مورد سدهای خاکی و یا بتنی، هنوز به خوبی استنباط نگردیده است. در تلاش‌های قبلی، برای پیش‌بینی سیالات پایین دست ناشی از شکست‌های سدی، عواملی فرض بر این بوده است که سد به طور کلی و در یک لحظه شکست می‌شود. محققین امواج سیالی شکست سد، فرض کردند که شکاف ایجاد شده در جسم سد تمام سد را در یک ثانیه و در یک لحظه به وقوع می‌پایند [1]. برخی دیگر، بر این باورند که شکاف به طور جزئی در قسمتی از سد به وقوع می‌پایند و پس از مدت زمان (At) کامل می‌شوید [9] و [10]. ولی به هر حال آن‌ها نیز وقوع شکاف را لحظاتی در فرض کردند [5] و [8]. فرضیات شکاف لحظاتی و کامل و تحلیل امواج شکست سد به خاطر راحتی در بی‌کارگیری روش‌های ریاضی تدوین شده‌اند. این فرضیات و نتایج برای سدهای نوع بینی قوسی مناسب هستند و تک براى سدهای خاکی و بینی وزنی مناسب نیستند.

انواع گیسختگی (شکاف)

گیسختگی سریز شونده: شکست یا گیسختگی سریز شونده، به صورت یک شکاف مستطیل، مثلث و یا نازک‌پیچ شکل شیب‌سازی می‌شود که از این نگاه زمان به تدریج از تالی سد به سمت گیرنده، ادامه می‌یابد (شکل 1). جریان در موان شکاف، در هر لحظه، با استفاده از معادله سریز به بهبود محاسبه می‌شود.

\[b = \bar{b} - z h_d \]

همان‌گونه که در شکل 1 مشاهده می‌شود، مدل مورد نظر، عرض کف شکاف را در یک نقطه فرض می‌کند و سپس آن را با توجه به فواصل زمانی گیسختگی و در طول زمان، به صورت خطی با گیراره تا رسیدن به عرض انتهایی (b) زیست می‌کند. عرض انتهایی نیز، معمولاً در جایی است که کف شکاف تا رقم ارتفاعی \(h_{bm} \) با پدیده فرسایشی مواجه می‌گردد. \(h_{bm} \) معمولاً ولی هنوز زمان‌ها، عبارت از ارتفاع \(t \) می‌باشد. اگر از یک نقطه مجزا با مشاص که در آن به صورت شروع شد، از مقدار \(b \) آغاز می‌گردد. بنابراین معمولاً باید جای گیسختگی فرسایشی عوامل گیسختگی و از گردد آموزه تغییر می‌گردد [1].

\[\text{Overtopping breach} \]
شکست ناپذیری از بدیهه ایجاد لوله 1 در جسم سد

مشخصات شکاف در سدها

شکاف سد و عرض شکاف طبق رابطه زیر به عنوان تابعی

از زمان (t) شیب‌سازی می‌شود:

\[0 < t_b \leq t \]

\[b = \left(\frac{t_b}{t} \right) \rho \]

در این رابطه:

\[h_b = h_d - (h_d - h_{bm}) \left(\frac{t_b}{t} \right) \rho \]

\[h_{bm} = \text{ارتفاع نهایی کف شکاف} \]

شده از اندیش شروع شکاف به بعد و \(\rho = \text{نمای شکاف} \)

با توجه داشته که نمای شکاف غیر خطی یک می‌باشد

4 تغییر می‌نماید. مقدار یک، مقدار مربوط به درجه

خطی بودن و عدد دو مربوط به درجه ربعی شکاف

غیر خطی می‌باشد. ضمناً ذکر این نکته لازم است که

درجه شکاف معقولی به صورت خطی فرض

می‌شود.

عرض کف لحظه‌ای شکاف (b) با استفاده از رابطه

\[b = b \left(\frac{t_b}{t} \right) \rho \]

در حین شیب‌سازی شکست سد، تشکیل واقعی

شکاف از زمان آغاز می‌گردد که ارتفاع سد آب مخزن

پیش از مقدار مشخص (h) می‌گردد. این ویژگی

موجب می‌شود که بتوان سریز شدن آب از روزی

1 Piping
قطعات پیکارچه مفروض باشد، ارتفاعات سطح آب حامله و سرعت‌های شکاف‌برداری را در می‌توان برای نشان دادن کاهش فشار بار روی سد نشان داد. با توجه به این که فشار در اثر افزایش عرض (b) کاهش می‌یابد ولی هدایت سیت ناپایین شرایط حد اندیشی پارگنیزی را که موجب گسترش بیشتر نمی‌گردد، برآورد نمود.

سدههای قوسی بینی تماشایی دارند که به طور کامل شکسته شوند و زمان مورد نیاز برای تشکیل شکاف در آنها فقط در حد پنج دقیقه است. باران‌های سریع جانی فشار (f) برای سدههای بینی معمولاً صفر ضرر می‌شود (شکاف مستقیم).

سدههای خاکی که به یک انواع دیگر سندها بیان وفور یافت می‌شوند نه تنها به طور کامل بلکه لحظه‌ای نیز از هم گشیرخته می‌شوند. عرض متوسط شکاف کامل سدههای خاکی معمولاً در محدوده 3\(b\) بین (h/3<h<2h) قرار دارند. در اینجا h عبارت از ارتفاع سد می‌باشد. با انرژیان عرض سکاف در سدههای خاکی معمولاً کمتر از طول سد در عرض دره است. همچنین برای تشکیل شکاف در میان مواد فرسایشی یافته ناشی از فرار آب به یک فاصله زمانی محدود، نیاز است. زمان کل شکست با توجه به ارتفاع سد، نوع مصالح به کار رفته در سد، شرایط تاکم مصالح و تبدیل (اندازه و مدت) سریزی شدند جریان فرار آب ممکن است در محدوده بین چند دقیقه تا چند ساعت باشد.

زمان شکست، به گونه‌ای که در DAMBRK به کار می‌رود، عبارت از فاصله زمانی بین اولین شکاف در سطح بالادست سد تا تشکیل کامل شکاف است. تشکیل شکاف در مورد شکاف‌های ناشی از سریزی شدند از شست و شوی سطح پایین دست سد، آغاز می‌گردد. پیشرفت شکاف و عمق شدند آن به سمت عقب عرض ناجی به سطح بالادست می‌رسد و به شکست نهایی منجر می‌گردد.
مختصر: حجم آب ذخیره شده در مخزن، جریان خروجی از سریز سد، جریان خروجی از شکاف با
در نظر گرفتن مقدار رسوبات حمل شده و ویران
تغییرات جریان در هر شکلی از فرسایش شکاف.
توسعه پیدا کرده.

رشد و توسعه شکاف، بستگی به مصالح به کار
رفته (دانه‌بدی خاک، وزن واحد حجم، زاویه
اصطکاکی و قدرت چسبندگی مواد) در سد دارد.
حالات زیر می‌توانند در حمل ذرات خاک، نحوه ایجاد
شکاف و زمان توسعه آن مؤثر واقع شوند.

- ماهیت مصالح مواد توانده از خواصی باشد که
در قسمت‌هایی از سد ایجاد شکاف نماید.
- احتمال ایجاد پدیده لوله در جسم سد نسبت به
حالات عبور آب از ناحیه تاج سد بیشتر می‌باشد.
- می‌توان با ایجاد پوشش گیاهی (مثلاً چمن) در
ضع یابندی دست و یا استفاده از مواد با دانه‌بدی
درشت و مناسب در قسمت‌های پایین دست به صورت
پوششی، از ایجاد شکاف و توسعه آن جلوگیری کرد.

- مکانیسم توسعه شکاف، هنگام ایجاد یک یا چند
فروریختگی در بخش‌های پس سد، به نشان
هیدرواستاتیکی خیالی زیاد و نرخ چسبندگی مواد
تشکیل دهنده سد، بستگی دارد.

- توسعه پهنای شکاف، از اثر فرو ریختن در طرف
شکاف سد، مطالعات پانداری شبی انجام می‌شود.
مقاومت بیشینه‌های مدل، با موارد ماهیانی در
شکست از نوع رگاندگی با ایجاد لوله در سد تا
در آب‌های، و شکست رگاندگی در سد دریچه لون در
کلاژ و شکست از نوع سریزی شدن از تاج سد
و ایجاد ناشی در بهره سد در سد پر، مطلوب و قابل
قبول بوده است.

حساست این مدل به پارامترهای عمومی، حداقل
است. این مدل حتی به زاویه اصطکاکی داخلی مواد
تشکیل دهنده سد و پوشش گیاهی خارجی به‌دنده می‌سوم

\[h_t = h_a \]

حدود ارتفاع سد.

هدف دیگر از مشخص کردن خصوصیات شکاف،
استفاده‌ای از مشخصات فیزیکی و نحوه فرسایش شکاف
ایجاد شده توسط مدل، می‌باشد. این تحقیق، نیازمند
فرض حالت بحرانی و تشخیص مشخصات مخزن و
جریان در پیش‌بینی حالت است [1 و 9]. این روش
نیازمند تشخیص دقیق شکل و اندازه شکاف است. در
این روش شکل و اندازه شکاف در عامل مهم و
بیحرانی برای نحوه حکرت و توسعه شکاف است [7 و
10].

\[n \]

دانشمندان، با ارائه یک روش محاسباتی عادی
سريع از مدل فرسایش، که به‌هم‌پوش متغیر
مایر-پیتر و مولر در حکرت رسوبات حاصل شده بود
به سکه روش‌های عادی تفاوت‌های محدود در
جریان‌های متحرک رسوبات، پیدا شکل شکاف
و شکست شدن سد را شبیه‌سازی کرده. نتایج
حذفی بنا به مشاهدات عمليه توسعه یک شکاف در
سد را رودخانه مانندرو در پرو مقایسه شد. در
نهاه، با تطابق مدل محاسباتی با مشاهدات عملی,
مشخص شد که توسعه شکاف به طور قابل ملاحظهای
به مقدار n مانندگی، وسعت جریان از داخل شکاف
(شکل فیزیکی و نحوه توسعه شکاف) و یک ضریب
از مقدار رسوب موجود در جریان بستگی دارد [8].

مدل ریاضی شکاف

اولین، مدل گسترش شکاف در سده‌های
خاکی را توسعه بخشید [10]. مدل ارائه شده توسط
فرید، اساساً با مدل‌های قبلی تفاوت دارد. مدل فریدی
پی است ریاضی بر پایه فیزیک شکاف می‌باشد، که
می‌تواند پارامترهای متغیر شکاف را پیچین نماید
(سایز ابعاد، زمان توسعه) و در نهایت، هیبریدیگرفت
دیگ حاصل از شکاف را تحلیل می‌کند. این مدل، با
استفاده از بهم پیوستن قسمت عمده جریان ورودی به

\[Fread, 1984-87 \]

www.SID.ir
بعنوان پارامترهای شکاف در سدهای خاکی
با بررسی کلیه مدل‌ها و انجام تحقیقات
از مایلی‌گاهی برای تعیین پارامترهای شکاف (\(b\) و \(t\)) استفاده از معادلات زیر پیشنهاد می‌شود:

\[
Q_p^* = 370 (V, h_a)^{0.5}
\]

\[
Q_p = \frac{C}{t + \frac{c}{(h_a)^{0.5}}}
\]

\[
C = \frac{22}{t} A_2
\]

برداشت
دبی پیک مورد انظار در هنگام شکاف
\(Q_p^*\)

\(Q_p\)

برداشت
حجم مخزن
\(V_r\)

\(A_2\)

سده

سد معادله 6 برای 14 سد که در کشوری شکستگی شده
بدوند، آزمایش‌شده و حداقل تطبیق بین نتایج
می‌باشد.

مقدارهای \(b\) و \(t\) با توجه به نوع خاص سد و با
توجه به مقدار متوسط \(b\) شکاف در پیشرفتی حالت
می‌باشد. انتخاب چندونه. زمان شکست (\(t\)). باشد در
کمترین میزان ممکن انتخاب شود ناپیشینی حجم
جریان خروجی در حالت نیم‌میزان زمان مورد استفاده
برای تحقیقی برای \(b\) و \(t\) باشد قابلیت تطبیق
با شرایط موجود در سد را داشته باشد. ناپیشین زمان
قدرت چسبندگی مواد تشکیل دهنده سد، حساس
می‌باشد.

حسیب پارامترها
انتخاب پارامترهای شکاف، قبل از شکاف‌سازی سد، با
در غرب تئوری مشاهداتی مشابه، نتایج غیر مشخص و
بعضاً غیر قابل اطمینان، از سیالاب شکست در
پایین دست را موجب می‌شود. با این حال، خطا‌های
پارامترهای شکاف و تأثیر آن در میزان جریان خروجی
پیک و نتایج حاصل از مدل، در موج پیش‌رو سیالاب
شکست در پایین دست، مستهلک می‌شود. میزان
استهلاک، به وسعت دشت سیالاب‌پایین دست پست‌گی
دارد. دشت‌های وسیع تر، میزان استهلاک پیوستگی
خواهند داشت و هرچه از مقطع سد به سمت
پایین دست پیچ می‌رویم، درصد خطا کاهش خواهد
یافت.

مقدارهای \(b\) و \(t\) با توجه به نوع خاص سد و با
توجه به مقدار متوسط \(b\) شکاف در پیشرفتی حالت
می‌باشد. انتخاب چندونه. زمان شکست (\(t\)). باشد در
کمترین میزان ممکن انتخاب شود ناپیشینی حجم
جریان خروجی در حالت نیم‌میزان زمان مورد استفاده
برای تحقیقی برای \(b\) و \(t\) باشد قابلیت تطبیق
با شرایط موجود در سد را داشته باشد. ناپیشین زمان

\(V\) و \(h_a\) از مدل کردن شکست و شکاف برداشت
سدها، می‌باشند [10].

\(NwS\)
برای نخستین بار، در حال تغییر و استخراج نتیجه با کمترین دقت خطا دارای زیرنویس در نظر گرفته شد.

1- هدف نهایی از بررسی فاصله شکست پیک سد
2- استفاده از آمار سدهای شکستی شده و مقایسه مشخصات سد سیلابه با موارد مشابه آن که در گذشته شکست شدهاند.

هدف نهایی این تحقیقات، به حذف رساندن خواص جانی و مالی در پایین دست سد است و این هدف مستلزم تصویر شکست سد در بادترین حالت ممکن می‌باشد. این نتایج بیانگر سد پر شدن مخزن و سری‌بیز شدن آب از راه انتخاب شد.

تعیین پارامترهای شکاف سد سیلاب

برای تعیین پارامترهای شکاف مثل نوع شکاف، ابعاد شکاف و زمان ایجاد و توسعه شکاف از آمار سدهای مشابه که در گذشته شکست پیک سد یافتند و همچنین روشهای مختلف مختلف که توسط دانشمندان بهبود شده و توضیح آن فرستاده گذشته آمده است، استفاده شد. در نهایت با مقایسه نتایج به دست آمده از روشهای گوناگون و کتابخانه کردن آنها با شرایط مشاهداتی، مقدار زیر برای پارامترهای شکاف پیش‌بینی شد.

نوع شکاف ذخیره‌گاه به شیب جانی

\[z = \frac{0.17}{b + 0.3} \]

و مشخصه‌ای تشکیل شکاف

\[f = 0.6 \times 10^{-6} \text{ (m)} \]

وقت توسعه شکاف در متوسط

\[b = 0.8 \times 10^{-6} \text{ (m)} \]

فاصله اندیابی تشکیل شکاف

\[b = 0.7 \times 10^{-6} \text{ (m)} \]

برای تعیین سیلاب به سمت‌های دور پایین دست سد را با دقت بیشتری پیش‌بینی نمود.

شرط متوسط حکمت موج سیلاب (سرعت متوسط) در درآمده باید بین ۱ و ۲ باید بر سه در در آمده باشد. در ادامه به معرفی سد مخزنی سیلابه، مسأله شکست در سد این سد، با توجه به مشخصات فیزیکی و موقعیت استراتژیک آن در بحران تین تحلیل می‌شود.

مطالعه موردی

سد مخزنی سیلابه، به صورت خاکی با هسته رسی و به حجم مخزن ۲۲۵ میلیون مترمکعب، می‌باشد. این سد بر روی رودخانه لایین قای و در بالادست شهر پرمشهر واقع شده است. وجود شهر پرمشهر در فاصله ۱۲ کیلومتری پایین دست سد، اهمیت بررسی نتایج حاصل از شکست این سد را دو دچاران مردمی کد که مقدار و پارامترهای زیر، براساس داده‌های سازمان و زمین‌شناسی مهندسی، هیدرولوژی حوزه آبریز رودخانه و نقشه‌های توپوگرافی مشابه با کمک مهندسین طراح و مشاور سد استخراج شد. این سد در موقع یابه (برست رودخانه) ۱۵۰۰ متر واقع شده و با ارتفاع ۵۷ متر قدرت آب‌گیری حداکثر ۲۲۵۴۳۳۳ مترمکعب را دارد. طول تاج ۴۶۰ متر و عرض تاج سد ۱۲ متر است. تاج سد در رقمو ۱۵۸۹ و تاج سریز در رقمو ۱۵۴۶ واقع شده. حداکثر ارتفاع آب در هنگام بر روی سریز، سد مخزن ۸/۲۰ متر که با توجه به طول ۸۰ متری سریز مقدار ۴۴۳ مترمکعب بر ثانیه حداکثر برابر با ۱۰۲۲۸۸۷ مترمکعب می‌باشد. تخلیه مخزن سد در حجم حداکثر توسط خروجی‌های سد (سریز و دریچه خروجی آب کشاورزی) ۱۵/۱۲ روز به طول می‌انجامد.

شکست آزمایشی و تحقیقاتی سد مستلزم تعیین پارامترهای مشترک شکست، نوع شکست، ابعاد شکاف، زمان ایجاد و توسعه شکاف می‌باشد.

1 US Army Corps of Engineers, Breach Model, 1987
مقدار پیک سیلاپ شکست برابر با \(Q_p = 76114.22 \text{m}^3/\text{s} \)

- این شکاف در این شرایط باید به طبقات مناسبی اضافه شود.
- تابع توزیع شکاف در سد (حدود دوم) از توزیع موج مدنی در مخزن سد صرف و ضریب گردیده است و از آنها که برجاگذاری شده و پیش از آن در مخزن حالت اهمیت نمی‌باشد، سطح مخزن در حین تخلیه به روند ثابتی افت می‌کند.

- نمودار پروفیل ارتفاع سیلاپ در شکست سد

- سیلوهای بانکر رکورد مختلف سیلاپ شکست در فواصل بین دشت سد می‌باشد (شکل 3). با استفاده از این نمودار نشان دهنده خیس شدگی در اثر سیلاپ شکست در بین دشت سد ترسیم گردیده است. براساس محاسبات انجام شده، شهر بزرگشهر که در فاصله 12 کیلومتری باین دشت سد واقع است، تا رقمو 1425 متر به زیر آب خواهد رفت.

- تابع توزیع شکاف در این سد به صورت دوره‌ای با شیب جانی

- این شکاف در سده‌ها به دو صورت طبیعی یا مصنوعی شده‌اند. این شکاف‌ها از سرریز شدن آب از تاج لوله که معمولاً به شکل‌های مستطیلی، مثلثی و نواحی شکاف در این سد به صورت دوره‌ای با شیب جانی
شکل 1 - هیدروگراف چرخان خروجی شکاف نسبت به زمان

شکل 2 - حجم چرخان خروجی شکافت

شکل 3 - پرتوی رقوم پیک چرخان شکاف در پایین دست سیلوله دست سد سیلوله

شکل 4 - حرکت پیک چرخان شکافت در دشت پایین

پیک سیلاب دارد که به عنوان خطای جریان قابل صرف‌نظر کردن است.

مدت زمان سیلاب به نقاط مختلف پایین دست سد در شکل 4 مشخص شده است. به این ترتیب تعدادی که در زمان نخست به کمک‌داده که دست سیلوله شکافت به شهر پیرانشهر هر سه و این زمان برای انجام اقدامات و عملیات هشدار و امداد رسانی مناسب است.

با دیگر گرفتگی زیرت مانیفگت متوسط در پایین دست سد با توجه به نوع پوشش منطقه (مقدار متوسط 450/0) نتایج به دست آمده، حاکی از اختلاف نمی‌راید درصد برای زمان حرکت پیک سیلاب می‌باشد. این امر تأثیر بسیار کمی بر ارتفاع