Linear and rotational velocities effects of friction stir welding tool on AA6061-T6 aluminum alloy T-joint

H. Aghajani Derazkola
Department of Mechanical Engineering, Islamic Azad University of Nour Branch, Noor, Iran.

N. Kordani
Department of Mechanical Engineering, University of Mazandaran, Mazandaran, Iran

H. Aghajani Derazkola
Young Researchers and Elites club, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract
Increase of strength and development of aerial structures has long been of interest to researchers. In this study, to investigate the T-joint T6-6061 aluminum alloy using friction stir welding process, laboratory samples were made, and also the software simulations were performed to find out the appropriate amounts of tools dynamic effects. Fluent commercial software has been used to better understand heat generation and distribution in the welding process. For this purpose, the T6-6061 aluminum joint with different linear and rotational tool speeds was studied. Depending on the selected parameters in the process, the strongest connection was produced in the 1600 rpm rotational speed and 68 mm/min linear velocity. The failure place of all tensile samples was located on the aluminum T appendage. Tunnel void was the major defect in the joints which disappeared with increasing heat input and simultaneous cooling rate to the joint. The maximum strength produced in these experiments is 188 MPa which is close to the strength of the aluminum base metal.

Keywords: Friction stir welding, AA6061 aluminum alloy, T-Joint, Mechanical properties, Metallurgical properties.

چکیده
افزایش استخراج و توسعه سازه‌های هوایی از طریق دو مرد توجه محققان بوده است. در این مقاله به منظور بررسی تأثیر T شکل آلیاژ آلومینیوم 6061 با استفاده از فرآیند جوشکاری اصطکاکی که در آن آزمایشگاهی ساخته شده و محققین شیب سازی ترم آلیاژ برای اکتشافات از وسایل نرم‌افزاری Fluent انجام شد. به همین منظور تحلیل T6061 با استفاده از نرم‌افزار تریانگولی فرآیند جوشکاری با استفاده از نرم‌افزار تریانگولی فرآیند جوشکاری با استفاده از نرم‌افزار تریانگولی فرآیند جوشکاری با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار تریانگولی F The T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از نرم‌افزار T شکل آلیاژ آلومینیوم 6061 با استفاده از Nasaer.kordani@umz.ac.ir
حقل آنالیز شیمیایی و نیز خواص فیزیکی این آلیاژ در جدول ۱ و
۲ آورده شده است.

۱- جدول ۱- درصد ترکیب شیمیایی آلیاژ آلومینیم AA6061

<table>
<thead>
<tr>
<th>عضو</th>
<th>درصد وزنتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.074</td>
</tr>
<tr>
<td>Cr</td>
<td>0.022</td>
</tr>
<tr>
<td>Mg</td>
<td>0.012</td>
</tr>
<tr>
<td>Mn</td>
<td>0.015</td>
</tr>
<tr>
<td>Si</td>
<td>0.008</td>
</tr>
<tr>
<td>Ti</td>
<td>0.008</td>
</tr>
<tr>
<td>Fe</td>
<td>0.007</td>
</tr>
<tr>
<td>Zn</td>
<td>0.006</td>
</tr>
</tbody>
</table>

۲- جدول ۲- خواص فیزیکی آلیاژ آلومینیم AA6061

<table>
<thead>
<tr>
<th>خواص فیزیکی</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_0 (MPa)</td>
<td>228</td>
</tr>
<tr>
<td>σ_0 (MPa)</td>
<td>103</td>
</tr>
<tr>
<td>دقتیت (MPa)</td>
<td>153</td>
</tr>
<tr>
<td>انتفاش (%)</td>
<td>71</td>
</tr>
<tr>
<td>سختی (HV)</td>
<td>30</td>
</tr>
<tr>
<td>ρ (Kg/m3)</td>
<td>2796</td>
</tr>
</tbody>
</table>

۳- شکل ۱- نمونه‌های آدامه‌سازی جهت اندازه‌گیری جوش‌کاری

در رحله بعد ورق‌های درون یک فیکسور از قبل طراحی شده در محل مناسب خود گرفته تا جوش‌کاری انجام شود. از آرایه مورد استفاده در این فرآیند دارای ضخامت ۴ میلیمتر افراد تهیه گردید. قطر کف ابراز ۵ میلیمتر، قطر نوک آن ۲ میلیمتر همچنین شانه ابراز ۴ میلیمتر و نوک تهیه شده است. جهت عکس‌برداری، از استاد جوش‌کاری به اداره‌های دیگر میلیمتر در ست میلیمتر به طول اصلاح جوش‌کاری را پیچیده می‌گردد. با توجه اصلاحات بدست داده شده این متراژ در طول برش به برش‌های تکراری خاصی می‌گردد. وجود قند این اصلاحات در سطح اصلاح، جوش‌کاری بکار رفته در سیرت این کار، برای ایده‌های دیگری استفاده خواهد شد.

۴- شکل ۲- روش جوش‌کاری اکستنشیال تا توانایی استفاده در اصلاحات این آلیاژ انجام شد.

۵- مراحل آزمایشگاهی

در این پژوهش، از تعریف آلومینیم ۶۰۶۱ به ابعاد ۵۰۰ میلیمتر در ۱۰۰ میلیمتر ساخته، به همراه استفاده از فلزات که به محدوده تهیه شده ۵۰۰ میلیمتر (به پوشش تهیه شده) در این پژوهش به منظور تهیه ورود به ابعاد سایر دستگاه‌های اصلاح برآورده شده می‌باشد. این اصلاح را در محل خاص، به همراه بهبود ماده بهتری به پوشش تهیه شده، از محصولات دورافتاده و پایدار بوده است. جهت اجرای آزمایشگاهی، جوش‌کاری را در شیوه تهیه شده برای این اصلاحات است. جوش‌کاری به پوشش تهیه شده، به صورت یک قسمت به شیوهی برای این اصلاحات استفاده شده است. با استفاده از دستگاه آنالیز مورد بررسی قرار گرفته است. این تحقیق را در شیوهی برای این اصلاحات استفاده کرده است.
جهت راست آزمایی نتایج، به ایالات هرنر فرایند، ۳ مرتبه جوشکاری به روش یک‌وزن منجر به حذف کردن ۳۰٪ جوشکاری تولید شد و در نهایت نتایج میانگین نمونه ها در این پژوهش کارایی می‌شود. جهت تایید این فرضیات، گرمای نسبت به مقدار گرمای جوشکاری Raytec-Rauenger (ST) استفاده گردید که شکل ۴ را در موارد و در فرآیند بین دو این گرمای افزایش یافته است. این گرمای جوشکاری یک‌وزن در پژوهش Raytec-Rauenger (ST)

3- شیب سازی فرآیند

در تحلیل ریاضی اطلاعاتی از اطلاعاتی که تولید شده توسط ابزار، نیروی هوا وارد شده بر فرمول‌های بار، و در نهایت نتایج در بررسی انرژی برای پیژندن در نسبت شیب‌سازی جوشکاری انتخابی به علت کاهش در پیش‌بینی مطابقی، جوشکاری‌های جلوگیری از فرآیند پیش‌بینی مطابقی را نشان می‌دهد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.

در مطالعه (۱۷)، رابطه با جهت منفی در راستای خلاف جهت حرکت گردش محصول می‌باشد. مدل ریاضی است که براساس معادله ارتباطی بین وزنهای سرعت و تغییر جریان می‌باشد.
حرارت ورودی به محل اتصال، بینگر جریان و افتنشال پیشتر مواد است که با پیشتر نشان دهنده دورالی، رخ می‌دهد. از عطر دوگربا افزایش سرعت خلیمی تولید شده کاهش می‌یابد. دیلی این پدیده در گذر سرعت معکوس گرمای پنجه و ماهیت اکسید شده به صورت تابی و رسنشان انجام می‌شود که اینها را نیز به جوتی رنگ می‌دان یابند. تعریف کرده:

$$\dot{e} = \left(\frac{1}{\xi} \right) $$

(9)

انتقال گرمای سطح قطعه کارها و محیط اطراف ایران به صورت رابطی و رسانش انجام می‌شود که اینها را نیز به جوتی رنگ می‌دان یابند. تعریف کرده:

$$-\frac{k a}{\partial T} = B e (T^4 - T_a^4) + h (T - T_a)$$

(10)

$$\frac{W}{m^2C}$$

ضرب انتقال گرمای سطح کاره در این به غیررسانشی. در نظر گرفته شده است. ضرب انتقال گرمای در کلمی به جوتی رنگ می‌گیرد. تعریف می‌شود که در این $$h$$ بینگر سرعت انتقال گرمای در کلمی به جوتی رنگ می‌شود که در نظر گرفته شده.

$$\frac{k a}{\partial T} = h_b (T - T_a)$$

(11)

شکل

4 مدل مش بندی شده این فرایند را نشان می‌دهد.

بحث و نتایج

نتایج سرعت ابراز بر میزان گرمای تولید شده

در حین فرایند گرمای ورودی به محل اتصال مبهم‌ترین عامل تغییرات جریان به حساب می‌آید که سبب بهبود خاصیت اتصال می‌شود. شکل 5 می‌تواند نشان دهنده میراها در حین فرآیند و شبیه‌سازی را نشان دهد. نتایج حاصل نشان داد حرارت انتقالگر تولید شده با سرعت دورالی ابراز ارتباط مستقیم دارد. بحث این اینکه با افزایش سرعت دورالی متغیر گرمای تولید شده در منطقه جریان، افزایش و با افزایش سرعت خطر اسید که می‌یابد. بررسی نتایج حاصل شده، شبیه‌سازی گرمای تولید شده در سرعت دورالی ۱۳۰ دور در دقیقه، ۴۰۰ درجه سیلسیوس بود که در سرعت خلیمی ۴۰ میلی‌متر در دقیقه حاصل شد. هرند افزایش
ابتدا به توجه به نتایج سرعت‌گرما در شیب سه‌سانتی‌متری که با کاهش سرعت حرارت افزایش می‌شود، سرعت مواد در اطراف ابر افزایش می‌یابد. سرعت مواد در اطراف ابر بیانگر حرارت کم در محل احتمال می‌باشد. نرخ کرنش مواد بالای در حال حرارت جایگاهی مواد نزدیک به دقت درجه حرارت مورد نظر دارد. نرخ کرنش مواد از جایگاهی مواد در اطراف ابر است. نتایج و نتایج شامل می‌توان دریافت که همانند کره‌های مورد نظر با کاهش سرعت حرارت از جایگاهی مواد در اطراف ابر افزایش می‌یابد. نرخ کرنش مواد در سرعت دورانی 490 دور در دقیقه و سرعت خشک.

شکل 7 - تاثیرات سرعت ابرگردان بر نرخ کرنش

شکل 8 - انرژی سطحی بر جریان سطحی مواد

شکل 9 - انرژی سطحی در سطح قطار

شکل 10 - انرژی سطحی در سطح قطار

شکل 11 - انرژی سطحی در سطح قطار

شکل 12 - انرژی سطحی در سطح قطار

شکل 13 - انرژی سطحی در سطح قطار

شکل 14 - انرژی سطحی در سطح قطار

شکل 15 - انرژی سطحی در سطح قطار

شکل 16 - انرژی سطحی در سطح قطار

شکل 17 - انرژی سطحی در سطح قطار

شکل 18 - انرژی سطحی در سطح قطار

شکل 19 - انرژی سطحی در سطح قطار

شکل 20 - انرژی سطحی در سطح قطار

شکل 21 - انرژی سطحی در سطح قطار

شکل 22 - انرژی سطحی در سطح قطار

شکل 23 - انرژی سطحی در سطح قطار

شکل 24 - انرژی سطحی در سطح قطار

شکل 25 - انرژی سطحی در سطح قطار

شکل 26 - انرژی سطحی در سطح قطار

شکل 27 - انرژی سطحی در سطح قطار

شکل 28 - انرژی سطحی در سطح قطار

شکل 29 - انرژی سطحی در سطح قطار

شکل 30 - انرژی سطحی در سطح قطار

شکل 31 - انرژی سطحی در سطح قطار

شکل 32 - انرژی سطحی در سطح قطار

شکل 33 - انرژی سطحی در سطح قطار

شکل 34 - انرژی سطحی در سطح قطار

شکل 35 - انرژی سطحی در سطح قطار

شکل 36 - انرژی سطحی در سطح قطار

شکل 37 - انرژی سطحی در سطح قطار

شکل 38 - انرژی سطحی در سطح قطار

شکل 39 - انرژی سطحی در سطح قطار

شکل 40 - انرژی سطحی در سطح قطار

شکل 41 - انرژی سطحی در سطح قطار

شکل 42 - انرژی سطحی در سطح قطار

شکل 43 - انرژی سطحی در سطح قطار

شکل 44 - انرژی سطحی در سطح قطار

شکل 45 - انرژی سطحی در سطح قطار

شکل 46 - انرژی سطحی در سطح قطار

شکل 47 - انرژی سطحی در سطح قطار

شکل 48 - انرژی سطحی در سطح قطار

شکل 49 - انرژی سطحی در سطح قطار

شکل 50 - انرژی سطحی در سطح قطار

شکل 51 - انرژی سطحی در سطح قطار

شکل 52 - انرژی سطحی در سطح قطار

شکل 53 - انرژی سطحی در سطح قطار

شکل 54 - انرژی سطحی در سطح قطار

شکل 55 - انرژی سطحی در سطح قطار

شکل 56 - انرژی سطحی در سطح قطار

شکل 57 - انرژی سطحی در سطح قطار

شکل 58 - انرژی سطحی در سطح قطار

شکل 59 - انرژی سطحی در سطح قطار

شکل 60 - انرژی سطحی در سطح قطار
در شکل 8 به‌صورت کشش شده‌اند. اگرچه تأثیر تنش از عوامل مهم مواد در مقطع برخی عرضی در شکل 6 نشان داده شده بود، اما این آزمون بررسی انتخاب و طول‌ریزی انتخاب در منطقه اشتعال بود. تأثیر داخلی و سطح‌پوشانی به طور پوستی در تمامی طول مسیر جوش، ایجاد شد. این بیان‌دهنده در نمای بالایی دو انواع دوخت‌سابقه بوده‌اند و ضیافت‌شیئی سطح داخلی بین زمان حمل بی‌این در نظر گرفته. منطقه اشتعال در ناحیه پسور بر نمای تر. این امر بیان می‌شود که در مقطع انتخابه که تک‌بسته است، ورق‌های بالایی و زاویه‌های ناقص ماکلاکی ایجاد نیست ولی یکن. نرخ کرنش بالایی در سرتاسر بالایی از نظر بی‌این باید در جابه‌جایی از داخلی و خارجی محصولات بازگشتی زمان بی‌این. نمای بالا در حالت خاصی با حجم مواد اولیه به حالت خاصی T است که بی‌این می‌شود انتخاب بی‌این و روند افزایش بالایی. این بی‌این می‌شود نرخ کرنش بالایی 400 دور بر دقیقه و 450 دور بر دقیقه که با سرعت خظ 125 دور بر دقیقه و 160 دور بر دقیقه که با سرعت خظ 80 دور بر دقیقه (الف) سرعت دورانی 400 دور بر دقیقه و سرعت خظ 40 دور بر دقیقه (ب) سرعت دورانی 160 دور بر دقیقه و سرعت خظ 40 دور بر دقیقه (ج)

نرخ کرنش مواد مانند سبیک برمکی تولید شده و سرعت جریان مواد در محل انتخابه است. به دلیل وجود زاویه در انتقال T شکل، مزمن شدن کامل مواد در ورق‌های بالایی و زاویه‌های پرسی تصمیم‌گیری انتقال مواد در ورق‌های بالایی انتقالگر انتقالگری انتقالگری است. به مظاهر بررسی انتقال جابه‌جایی مواد و تأثیر جابه‌جایی از نظر کرنش، دو نمودار انتقال 400 دور بر دقیقه و سرعت خظ 30 دور بر دقیقه شکل 9- تصویر منطقه‌ای از منطقه انتخابی انتقالگری ای که با سرعت دورانی (الف) 40 دور بر دقیقه و (ب) 120 دور بر دقیقه و سرعت خظ 40 دور بر دقیقه و سرعت خظ 30 دور بر دقیقه
4-5- تاثیر سرعت اجزاء بر سرعت مواد در منطقه انشاغشان

نتایج حاصل از سرعت مداو در منطقه انشاغشان نمونه جوشکاری شده با سرعت دورانی 1600 دور بر دقیقه و سرعت خاطی 40 میلیمتر بر دقیقه در شکل 10-الف نشان داده شده است. نتایج حاصل نشان داد که بیشتر سرعت مواد در ناحیه پیشرو و در سطح تمام مواد با شانه ابراز افکار منفی افکار. به منظور بررسی افکار تاثیر سرعت مواد بر ابعاد و خواص مکانیکی اصل، نتایج آماری بیشتر سرعت مواد در منطقه انشاغشان از شکل B تا شکل A نسبت به شکل B داده شده است. در نتایج حاصل با افکارگر جرما و رمک ردن در سرعت دورانی بالا و سرعت خاطی پایین از ترک سرعت مواد نیز در هر دو ناحیه پیشرو و پس از افزایش می یابد. از طرف دیگر می توان دید سرعت مواد از نقطه A یا سمت جلو افزایش یابد. این پدیده به دلیل قطع B یا از طرف دیگر سرعت مداو در سطح جوش شده اگر سرعت افزایش یابد و خروج مواد از منطقه جوش شده و کاهش ابعاد منطقه انشاغشان خواهد بود. نتایج حاصل از شکل 10-الف نشان داده شده است. نتایج حاصل با افکارگر جرما و رمک ردن در سرعت دورانی بالا و سرعت خاطی پایین از ترک سرعت مواد نیز در هر دو ناحیه پیشرو و پس از افزایش می یابد. از طرف دیگر می توان دید سرعت مواد از نقطه A یا سمت جلو افزایش یابد. این پدیده به دلیل قطع B یا از طرف دیگر سرعت مداو در سطح جوش شده اگر سرعت افزایش یابد و خروج مواد از منطقه جوش شده و کاهش ابعاد منطقه انشاغشان خواهد بود.

5- نتیجه گیری

طبق بررسی و مطالعات تجربی و شیب سازی انجام شده در این مطالعه، جوشکاری اصلاحاتی انشاغشان می تواند به عنوان روشی برای کم کردن جهت اصل T شکل طبقه الطبیعی و چگونگی اصلاحاتی برای روشان دمای کمتر و اندماً بیشتر به همین کمیت تا به روشانای دمو معاملاتی باشد. برندهای اصلاحاتی توسط فرآیند نیوترونیک برای افزایش همکاری گرما و سطح گرمایش نمایش می گیرد. کنترل سرعت خاطی سپر فرآیند نیوترونیک دیگر سرعت خاطی زایده بسیار افزایش نمود. نیوترونیک نشان می دهد که بیشتر از اعمال شکل غیره، اثر یک در دیجیتال جوشکاری 1600 دور در دقیقه با پیشرو 48 میلیمتر در دقیقه چرامی ناحیه جوش شده بریسی و وضعیت خود در این مطالعه.

