ارزیابی تماس حریق‌های با آزمایش در یک صنعت تولید لنت ترمز خودرو

دکتر احسان کاکویی و محمود صامتی

چکیده:
بررسی توصیفی میزان بار آلودگی و تماس محطره آمیز در فرآیندهای تولید لنت ترمز از طریق تعیین کل ذرات آزمایش در (Total Dust) در یک صنعت تولید لنت ترمز شرکت داد که غلظت ذرات کل در دو سال و در 15 نقطه بر اساس 16/88 تا 2 میلی گرم بر متر مکعب می‌باشد که بیشتر از حد استاندارد تعیین شده است. در این مطالعه برای شمارش ذرات لنت ترمز در محیط کار محترم از دستورالعمل اداره ایمنی و بهداشت حریق آمریکا (OSHA) به منظور ارزیابی سطح تماس محترم آمیز با آزمایش دم شرکت داد که در کلیه نقاط اندازه‌گیری شده غلظت ذرات آزمایش در 95-99/2 درصد میزان مورد نظر فنیکس ذرات مونتاژ و غیر فیبری و مطالعه مکروسکوپی مشخص گردید که فقط 10 درصد ذرات شمارش شده را لفت تشکیل می‌دهد و 90 درصد مایع شکل اشکال غیر منظمی دارد.

واژگان کلیدی: آزمایش آزمایش، ارزیابی تماس حریق‌های با، صنعت استخوان‌کشی خودرو

1. گروه بهداشت حریق‌های دانشگاهی بهداشت و سلامت تحقیقات بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران.

زمستان 1391، سال اول، شماره چهارم

www.SID.ir
مقدهم:
آرزبت به گروه‌های از سیلیکات‌های معنی‌دار اطلاق می‌شود که به دو دسته: آرزبت ماف مارسیقوس و دو شاخه یا آنزیم‌های ناشی از موادهای آرسینیک. پیشرفت در مکانیک و پی تکنولوژی، واقع این جهت نتایج قدرتمند ایجاد می‌کنند. این بار آنلاین در صنایع مختلف که آن و ارزیابی، تعیین موادی و سیالی. پیشرفت در ساخت بیماری‌های اصلی (مانند سلامتی) از آرسینیک است. در طیبیه بدن بیماری‌های ناشی از کارآزمایی با استفاده از بررسی‌های مفید است. در مطالعات، آنلاین و با استفاده از آزمون‌های مختلف که عبارت است از آنلاین، نشانه‌هایی که معلولیت ناشی از تغییرات با سیلیکات‌های معنی‌دار است. این پژوهش‌ها با این تحقیق‌ها که ممکن است در آینده است. در نتیجه نتایج مثبت، گزارش‌های علمی با آرزبت به و راهنماهای اجتماعی و اصلاحات زنجیره‌ای گروه‌های از بیماری‌های یکی ممکن است. به شکل یک اصل مهم در راهبردی کنترل می‌باشد. این آزمایشات جلوگیری از ورود الافیر به داخل سیستم باید توجه به همین راهبرد اجتماعی سیاست‌های بهبود وضعیت و سیستم‌های سیالت مناسب است. این نوع سیستم در کاربرد اجتماعی و یکی از کاربردی‌ترین پیامدهای کلیت الافیر آرسینیک به شمار می‌رود.
(Confereb R.G. 1994)

روش کار:
الف) انتقال گروهی گردشگر این نمونه بررسی میزان با گردشگر موجود در فرآیند او، گردشگر که در تکنیک نمونه برداری است. (Static sampling) www.SID.ir
نتایج:
جهت دستیابی به اهداف این تحقیق میزان گودویگار
کلی دو سالن توزیع و سواری در جدول شماره 2 و 3 و
نتایج شمارش آزمون و توزیع فراوانی ذرات بر
حسب میکروون در دو سالن فوق در جداول شماره 3 و 5
نشان داده شده اند. در نتیجه آن که میزان تراکم گودویگار
کلی در دو سالن توزیع و سواری بین 50 و 100 میلی گرم بر متر
مکعب معنی‌دار است، نتایج بدست آمده کاملاً مشخص
می‌نماید که در حدود نیمی از نقاط موجود در دو سالن
 فوق الذکر میزان مخاطره آزمین بالا آزمین وجود دارد.
برآورد غلظت الاف آزمین نیز به خوبی نشان می‌دهد که
در تمامی نقاط انگازه گیری گسترش غلظت الاف آزمین بین
(OSHA) 95-79 برای میزان توسط شده
است. بنابراین در تمامی نقاط نمونه برداشت شده
OSHA مانند خطرنامه بالا آزمین وجود دارد. همچنین
با توجه به یافتن این اطلاعات میزان بالا آزمین تراکم
میزان تراکم الاف آزمین از منظر به صورت یک تا گسترش
در محیط کار صورت می‌گیرد. نتایج شمارش ذرات که
جهت مشخص شدن توزیع میزان ذرات بالا گیری و بالا گرفته، به خوبی نشان می‌دهد که تنها 10٪
کل ذرات شمارش شده روی شبکه می‌دهد و 90٪ دامی
شامل ریختگی غیربه‌خیالی هستند. نتیجه قابل توجه در این
خصوص این است که 80٪ ذرات شمارش شده ابتدا
کمتر از 10 میکرون دارد و 10٪ ذرات شمارش از
ایباعده برخوردار بوده است. از آن‌جاه
زمان نمونه برداشته در حین ریخت با سیستم تهویه شده است،
بنابراین بدست آمده هر ذرات با فاصله کمتر از 10 میکرون به خوبی
نشان دهنده عملکرد صیفی سیستم تهویه می‌باشد.

بحث و نتیجه‌گیری:
میزان گودویگار کل در فرآیند تولید و پست های
کار می‌باشد که میزان بیماری می‌تواند در رایانش
آلودگی به سیستم تهویه موجود در پست‌های
باید با کاهش محدود شدن این فرآیند به
وسیله گزارش و شناسایی سیستم تهویه می‌باشد.

www.SID.ir
جدول ۱ - نتایج نمونه برداری گردوهیار کل در سالن توزین بر حسب mg/m^3

<table>
<thead>
<tr>
<th>میزان mg/m^3</th>
<th>انحراف معیار</th>
<th>نمونه سوم</th>
<th>نمونه دوم</th>
<th>نمونه اول</th>
<th>محل نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16/10$</td>
<td>$0/59$</td>
<td>$16/22$</td>
<td>$15/88$</td>
<td>$16/46$</td>
<td>۱- میکسر ایرانی قلیم</td>
</tr>
<tr>
<td>$10/9$</td>
<td>$0/50$</td>
<td>$16/75$</td>
<td>$15/9$</td>
<td>$16/4$</td>
<td>۲- میکسر ایرانی جدید</td>
</tr>
<tr>
<td>$15/9$</td>
<td>$0/17$</td>
<td>$15/77$</td>
<td>$15/83$</td>
<td>$16/1$</td>
<td>۳- میکسر آلمانی</td>
</tr>
<tr>
<td>$17/73$</td>
<td>$0/48$</td>
<td>$14/88$</td>
<td>$13/11$</td>
<td>$16/22$</td>
<td>۴- لودنگر باند خروجی</td>
</tr>
<tr>
<td>$2/36$</td>
<td>$0/16$</td>
<td>$2/33$</td>
<td>$2/00$</td>
<td>$2/22$</td>
<td>۵- لودنگر بلند ورودی</td>
</tr>
<tr>
<td>$2/08$</td>
<td>$0/16$</td>
<td>$2/11$</td>
<td>$1/91$</td>
<td>$2/33$</td>
<td>۶- آسیاب ویژه</td>
</tr>
<tr>
<td>$2/05$</td>
<td>$0/22$</td>
<td>$2/4$</td>
<td>$2/33$</td>
<td>2</td>
<td>۷- G.K. دستگاه</td>
</tr>
</tbody>
</table>

جدول ۲ - نتایج نمونه برداری گرد و غبار کل در سالن سوادی بر حسب mg/m^3

<table>
<thead>
<tr>
<th>میزان mg/m^3</th>
<th>انحراف معیار</th>
<th>نمونه سوم</th>
<th>نمونه دوم</th>
<th>نمونه اول</th>
<th>محل نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7/4$</td>
<td>$1/5$</td>
<td>$7/48$</td>
<td>$7/48$</td>
<td>$7/44$</td>
<td>۱- دریل دستی شماره ۱</td>
</tr>
<tr>
<td>$11/04$</td>
<td>$1/8$</td>
<td>$10/88$</td>
<td>$11/36$</td>
<td>$12/44$</td>
<td>۲- محل جنگل‌کردن لیت از غالب</td>
</tr>
<tr>
<td>$7/4$</td>
<td>$2/39$</td>
<td>$7/48$</td>
<td>$7/44$</td>
<td>$8/22$</td>
<td>۳- گویا و بالا و پایین</td>
</tr>
<tr>
<td>$12/33$</td>
<td>$0/00$</td>
<td>$12/47$</td>
<td>$12/88$</td>
<td>$13/33$</td>
<td>۴- گویا</td>
</tr>
<tr>
<td>$7/1$</td>
<td>$2/29$</td>
<td>$0/88$</td>
<td>$2/88$</td>
<td>$0/00$</td>
<td>۵- دستگاه شکمی</td>
</tr>
<tr>
<td>$10/88$</td>
<td>$2/33$</td>
<td>$15/88$</td>
<td>$15/05$</td>
<td>$16/22$</td>
<td>۶- دستگاه پولیش خروجی</td>
</tr>
<tr>
<td>$7/22$</td>
<td>$0/88$</td>
<td>$7/22$</td>
<td>$7/66$</td>
<td>$7/22$</td>
<td>۷- دستگاه پولیش خروجی</td>
</tr>
<tr>
<td>$12/32$</td>
<td>$0/5$</td>
<td>$12/88$</td>
<td>$10/88$</td>
<td>$16/22$</td>
<td>۸- دستگاه پولیش</td>
</tr>
</tbody>
</table>

www.SID.ir
جدول ۳- نتایج شمارش الاف آزیست در سالن توزیع بر حسب

<table>
<thead>
<tr>
<th>PEL (A.L)</th>
<th>PEL (T.W.A)</th>
<th>دامنه Max-Min</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>تعداد نمونه</th>
<th>محل نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۱</td>
<td>۰/۰۲</td>
<td>۰/۱۱-۰/۱۴۴</td>
<td>۰/۸۰</td>
<td>۰/۸۵</td>
<td>۰</td>
<td>۱- میکسر ایرانی قدیم</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۹۰-۰/۱۸۱</td>
<td>۰/۸۱</td>
<td>۰/۸۱</td>
<td>۰</td>
<td>۲- میکسر ایرانی جدید</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۲۱-۰/۱۸۱</td>
<td>۰/۷۶</td>
<td>۰/۷۶</td>
<td>۰</td>
<td>۳- میکسر آلمنی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۲۲-۰/۲۱۲</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰</td>
<td>۴- لودیزی بلند خروجی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۲۳-۰/۲۰۱</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰</td>
<td>۵- لودیزی بلند ورودی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۳۱-۰/۲۳۱</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰</td>
<td>۶- آپار یشیک</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۴۴-۰/۳۳۲</td>
<td>۰/۷۴</td>
<td>۰/۷۴</td>
<td>۰</td>
<td>۷- دماغه</td>
</tr>
</tbody>
</table>

جدول ۴- نتایج شمارش الاف آزیست در سالن سواری بر حسب

<table>
<thead>
<tr>
<th>PEL (A.L)</th>
<th>PEL (T.W.A)</th>
<th>دامنه Max-Min</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>تعداد نمونه</th>
<th>محل نمونه برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۰۱</td>
<td>۰/۰۲</td>
<td>۰/۱۰-۰/۲۲۲</td>
<td>۰/۳۰</td>
<td>۰/۳۰</td>
<td>۰</td>
<td>۱- دیلی دستی</td>
</tr>
<tr>
<td>۰/۰۲</td>
<td>۰/۰۱</td>
<td>۰/۲۰-۰/۱۱۸</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۲- محل جدایی یا دستاورد غربال</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۲۳-۰/۱۸۶</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۳- سواس پلا و پایین</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۳۳-۰/۲۲۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۴- کوبن</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۴۰-۰/۲۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۵- دماغه شکمی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۵۰-۰/۲۱۰</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۶- پولیش ورودی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۶۰-۰/۲۳۲</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۷- پولیش خروجی</td>
</tr>
<tr>
<td>۰/۱۰</td>
<td>۰/۰۲</td>
<td>۰/۷۰-۰/۲۱۸</td>
<td>۰/۳۲</td>
<td>۰/۳۲</td>
<td>۰</td>
<td>۸- دماغه بخ</td>
</tr>
</tbody>
</table>

Fiber/cc: حد نهایت صوتی آلودگی اورژانس (OSHA) PEL(T.W.A)
Fiber/cc: حد نهایت صوتی آلودگی اورژانس (OSHA) PEL(A.L)
جدول ۵- توزیع فراوانی ذرات بر حسب میکرون در سالن توزین و سواری بر حسب میکرون

<table>
<thead>
<tr>
<th>فراوانی نسبی</th>
<th>درصد فراوانی</th>
<th>تجربی</th>
<th>فراوانی ذرات و چسب</th>
<th>توزیع ذرات بر حسب میکرون</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(22/9)</td>
<td>68</td>
<td>68</td>
<td>(\leq 10)</td>
</tr>
<tr>
<td>15/1</td>
<td>38</td>
<td>1162</td>
<td>404</td>
<td>10, 10</td>
</tr>
<tr>
<td>11/6</td>
<td>59/5</td>
<td>1448</td>
<td>424</td>
<td>5, 7, 10</td>
</tr>
<tr>
<td>11</td>
<td>60/8</td>
<td>1814</td>
<td>330</td>
<td>7, 10, 10</td>
</tr>
<tr>
<td>11/8</td>
<td>72/3</td>
<td>2170</td>
<td>356</td>
<td>10, 12, 10</td>
</tr>
<tr>
<td>9/3</td>
<td>81/7</td>
<td>2450</td>
<td>28</td>
<td>12, 10, 10</td>
</tr>
<tr>
<td>18/3</td>
<td>100</td>
<td>3000</td>
<td>50</td>
<td>(\geq 10)</td>
</tr>
</tbody>
</table>

ASSESSMENT OF OCCUPATIONAL EXPOSURE TO AIRBORNE ASBESTOSE DUST IN THE BRAKE SHOE MANUFACTURE FACTORY

Kakooei H.,¹ Ph.D; Sameti M.¹ MSPH

This study has been done in a major brake-shoe factory. Air samples were taken and dust levels determined according to OSHA code, revealing a dust load in weighting and shooting saloons ranging from 2 to 16.88 mg/m³. Measurement and counting of asbestos fibers were done using OSHA ID 160/ code and permissible exposure levels.

Asbestos fiber counts in sampled areas were higher than the time weighted average level (TWA) and even higher than action level.

Particle size distribution was also determined. It turned out that of the 3000 counted particles, %90 of non-fibers and %10 are fiber-shaped. Also size of %60.4 of counted fibers is lower than 10 μ that %80 of them are fibers.

The results of this study showed significantly that the maximum pollution loads occur in the weighting section, especially in the mixers. Heavy pollutant load, low air flow (face velocity) and use of canopies with the lowest enclosure may be regarded as potential mechanisms.

Key words: Asbestose dust, Assessment of occupational exposure, brake shoe manufacture factory.

¹ School of public Health and Institute of public Health Research, Tehran university of Medical sciences. P.O.Box. 14155-6446, Tehran, Iran.