تأثیر محلول باشی کینوزان بر عیان زیگاه کمی و کمی باوبون آلمانی (L.)

بحث نشان کم‌آی

محمدصادق دهقانی، مصطفی نعیمی، ابراهیم غلامی علمی، نورالدین علی‌فر و حمید جباری

1- دانشجویی کارشناسی ارشد، رشته آگراکولوژی، دانشگاه گیلان، گیلان، ایران
2- استادیار، گروه تولیدات گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گیلان، گیلان، ایران

Naemi_701@yahoo.com

چکیده

با ملاحظه بررسی تأثیر محلول باشی کینوزان بر عیان زیگاه کمی و کمی باوبون آلمانی (L.) در شرایط تنش کم‌آی، آزمایشی به‌صورت فاکتوریل در قالب طرح پلک‌های کامل شامل با 72 نمونه در سال زراعی 1392-94 در مزرعه تحقیقاتی دانشگاه کشاورزی دانشکده گیلان، ایران اجرا شد. فاکتورهای ورد مطالعه شامل ترانسپوزیشن اریج 0، 100، 200، 300 و 400 میلی‌تری، همچنین درودکارکرد و تثبیت بی‌کاری کیسین در نگه‌دارنده در مقدار متوسط محصول باشی کینوزان 125 میلی‌گرم در لیتر 60 روز پس از کاشت (K1)، محلول باشی به مقدار 125 میلی‌گرم در لیتر 75 روز پس از کاشت (K2)، محلول باشی به مقدار 250 میلی‌گرم در لیتر 75 روز پس از کاشت (K3) و محلول باشی به مقدار 250 میلی‌گرم در لیتر 75 روز پس از کاشت (K4) بودند.

نتایج نشان داد که تنش کم‌آی موجب کاهش صفات ارزش‌آمیز شده و افزایش ناپایداری فرموله شده و ممکن است碗ایی کینوزان موجب بهبود فرموله شود و کمک کند که محلول باشی کینوزان به مقدار 115 میلی‌گرم در لیتر 40 روز پس از کاشت موجب افزایش ارزش تمام مراحل درصدی و عملکرد انسان و بیمارین مقدار کم‌آی است. در سه ترتیب تنش کم‌آی، باوبون مصنوعی از تیمار سخت باوبون به عنوان ماده طبیعی توسط گزارش کاهش خسارت تنش رطوبی و همچنین افزایش کمازولن در باوبون آلمانی حاصل از تمرین است.

واژه‌های کلیدی: انسان، باوبون زیستی، عملکرد گل، کمازولن، کینوزان.

مقدمه

باوبون آلمانی (L.) یکی از گیاهان (Matricaria chamomilla) که به‌طور گسترده‌ای در دارویی به‌کار می‌رود. باوبون در تمام فاصله‌های گیاهی مصرف می‌گردد. باوبون در تمار فارماکوهیاتی معمول به عنوان یک گیاه دارویی مغذی شده و خواص دارمانی گل‌های آن مورد بررسی قرار گرفته است.

(Salamon, 1992) در مطالعات بالینی و تجربی اثرهای درمانی باوبون در بیماری‌های دستگاه کاوش و عصبی و خواص ضد عفونیت، ضد وبوس، ضد میکروب، آنتی‌کسیدان، ضد سرطان برای این گیاه اثبات شده است. همچنین منشأ لکه است که این گیاه در انتماه و بهبود زخم‌ها مؤثر است (Rabiei & Rafieian, 2018).
عوامل محیطی محل روش گیاهان دارویی بر مدار کل ماده مؤثر و عنواصر تشکیل دهنده آن و تولید و زنخک گیاه
تأثیر می‌گذارد. تنش خشکی ازجمله تنش‌های محیطی است که علائم و کاهش رشد ریشه و تغییر در
بازارها آناتومیکی گیاه, از طریق ایجاد نشانه تنش ناپایداری تنش اکسیداسیون، سبب تغیر در مسیرهای ترکیب،
و متابولیتهای تنشی می‌شود (Sharma et al., 2012). از
صدای گیاهانی مهمی که در شرایط خشکی ایجاد می‌گردد,
تخرب مولکول کارولفیل است. کاهش میزان ترکیب
فتوسنتزی به طوری که می‌تواند باعث کاهش توانایی
فتوسنتز سه بعدی تولید الهام‌زده و ناپایداری است.
در طی بروز تنش خشکی، گیاهان با دیدگاهی مواد نظیه‌تری که
اسمزیت میانه اسیدهای آمینه، برخی بیون های معنی،
هورمون‌ها و پروتئین‌ها سعی در مقابله با تنش دارند. در میان
ترکیب‌های آن، پروتئین‌هایی از مهم‌ترین نظیه‌تری‌های
اسمزیت هستند. (Prasad et al., 2004)

گونه‌های مختلف گیاهان دارویی تحت آبیاری کامل و تنش خشکی
و اکتشافاتی منفی‌تری از خود نشان می‌دهند. تولید متابولیتهای
تاشیه در گیاهان به‌وسیله عوامل محیطی تغییر می‌یابد و تنش
خشکی عامل مؤثری در شرود و همچنین تولید ترکیب‌های
طبیعی گیاهان دارویی می‌باشد (Malekpour et al., 2002)

برای وجود آزمون، گیاه نازی به رشد روشی مناسب و تولید
اکتشافاتی تشکیل دهنده آن در مراحل مختلف رشد و تولید
از بین دارد. تنش خشکی حرارتی از اجزاء تشکیل
گیاهان می‌تواند باعث می‌گردد که در خشکی
پزشکی گزارش کردن که محلول‌های کیتیز و به جنگ
شدن روندها و کاهش تعرق در گیاه فلز و گردی و موجب
کاهش ۴۰ درصد مصرف آب شده. در حالی که عامل اصلی
تغییر محورسی ناگهانی شده است که باید تغییر
بیشتری و در کمترین دارد.

(Bayer et al., 2001)

پزشکی گزارش کردن که محلول‌های
نتایج افزایش ارتفاع بونه و ترکیب‌های
کاهش تعداد و وزن گل و وزن خشکی ایندما هواپی با گیاه
دارویی بیاوه. (Ghanidehkordy et al., 2011)

ضخامت نمایتی گزارش کردن که تنش خشکی منجر به
کاهش تعداد و وزن گل و وزن خشکی ایندما هواپی با گیاه
دارویی بیاوه. (Ghanidehkordy et al., 2011)

ضخامت نمایتی گزارش کردن که تنش خشکی منجر به
کاهش تعداد و وزن گل و وزن خشکی ایندما هواپی با گیاه
دارویی بیاوه. (Ghanidehkordy et al., 2011)
کشته تحقیق و پژوهش در زمینه تولید گیاهان دارویی در شرایط کمبود رطوبت و روندی‌های مصرفی آن ضروری به نظر می‌رسد. هدف از انجام این آزمایش بررسی اثرات محلول‌های کیتوژان در شرایط نرخ کم آبی بر وزن و رشد گیاه‌های کمی و نسبی گیاه دارویی باعث آنلاین پودر می‌باشد.

مواد و روش‌ها

آزمایش در مرزه تحقیقات دانشکده شیمی و فناوری دانشگاه گیلان که با مختصات طول جغرافیایی ۵۵ درجه و ۱۲ دقیقه طول شرقی و ۳۷ درجه و ۱۲ دقیقه عرض شمالی و ۴۵ متر ارتفاع از سطح دریا در سال زراعی ۱۳۹۲ انجام شد. بر اساس اطلاعات ایستگاه هواشناسی گیلان، این محل در سیستم طبیعتی کونی دارای الیز میدان‌یابی گرم و سردشکن و متوسط بارش‌های سالانه ۴۵۰ میلی‌متر می‌باشد. قبل از شروع آزمایش به‌منظور بررسی وزن گیاهی فیزیکی و شیمیایی خاک محل آزمایش نمونه‌برداری از عمق ۳۰-۱۵ سانتی‌متر انجام گردید که نتایج آن در جدول ۱ گزارش نشده است.

جدول ۱ - خصوصیات فیزیکی و شیمیایی خاک محل اجرای آزمایش (عمق ۳۰-۱۵ سانتی‌متر)

| طبقه خاک | هدایت الکتریکی | مواد خشک شونده کربن آلی | نیتروژن | فسفر | سبزرس | رس سیستم | رس سیستم
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>باتاج خاک</td>
<td></td>
<td>۸/۹</td>
<td>۷/۹</td>
<td>۱/۱۹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیالی قومی</td>
<td></td>
<td>۲/۱</td>
<td>۶/۲</td>
<td>۷/۱</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

به‌منظور تهیه طرح بی‌خفاشگی کامل تصادفی به سه تکرار اجرای خرد گردید. فاکتورهای مورد بررسی شامل پروری در دو سطح به‌صورت ابابری پس از ۰ و ۱۰۰ میلی‌متر تبخیر از تشریح کلاس A به‌ترتیب شرایط بدون تنش و تنش کم (۴/۸) و محلول‌پاشی کیتوژان در دو سطح شعله و مصرف کیتوژان (محلول‌پاشی با آب مصرف) به‌عنوان تیمار شاهد (K1) به‌صورت پذیرش دریافت به‌کارگیری رشته خاک و پیمان‌سازی تحقیق عرض گرفته شد. کشت در رفیق‌های با فاصله ۱۰ سانتی‌متر و با فاصله بتوانه نجسانتی‌متر روز روی رفیق انجام گردید. فاصله کرده‌ها از هم که محلول‌پاشی کیتوژان منجر به افزایش عملکرد ماده خشک و عملکرد اساسی در گیاه آوانی‌داری گردید. طی پژوهش دیگری مشخص شد که محلول‌پاشی کیتوژان منجر به افزایش Sultana et al., ۲۰۱۷. ارتقای تعادل گل و عملکرد گونه فرگی گردید (۲). گروهی از محققین بیان کردند که کاربرد کیتوژان منجر به افزایش سطح برگ و ماده خشک کل در گیاه دارویی آوانی‌داری گردید (Emami Bistgani et al., ۲۰۱۷).

به‌منظور تهیه طرح بی‌خفاشگی کامل تصادفی به سه تکرار اجرای خرد گردید. فاکتورهای مورد بررسی شامل پروری در دو سطح به‌صورت ابابری پس از ۰ و ۱۰۰ میلی‌متر تبخیر از تشریح کلاس A به‌ترتیب شرایط بدون تنش و تنش کم (۴/۸) و محلول‌پاشی کیتوژان در دو سطح شعله و مصرف کیتوژان (محلول‌پاشی با آب مصرف) به‌عنوان تیمار شاهد (K1) به‌صورت پذیرش دریافت به‌کارگیری رشته خاک و پیمان‌سازی تحقیق عرض گرفته شد. کشت در رفیق‌های با فاصله ۱۰ سانتی‌متر و با فاصله بتوانه نجسانتی‌متر روز روی رفیق انجام گردید. فاصله کرده‌ها از هم که محلول‌پاشی کیتوژان منجر به افزایش عملکرد ماده خشک و عملکرد اساسی در گیاه آوانی‌داری گردید. طی پژوهش دیگری مشخص شد که محلول‌پاشی کیتوژان منجر به افزایش Sultana et al., ۲۰۱۷. ارتقای تعادل گل و عملکرد گونه فرگی گردید (۲). گروهی از محققین بیان کردند که کاربرد کیتوژان منجر به افزایش سطح برگ و ماده خشک کل در گیاه دارویی آوانی‌داری گردید (Emami Bistgani et al., ۲۰۱۷).

به‌منظور تهیه طرح بی‌خفاشگی کامل تصادفی به سه تکرار اجرای خرد گردید. فاکتورهای مورد بررسی شامل پروری در دو سطح به‌صورت ابابری پس از ۰ و ۱۰۰ میلی‌متر تبخیر از تشریح کلاس A به‌ترتیب شرایط بدون تنش و تنش کم (۴/۸) و محلول‌پاشی کیتوژان در دو سطح شعله و مصرف کیتوژان (محلول‌پاشی با آب مصرف) به‌عنوان تیمار شاهد (K1) به‌صورت پذیرش دریافت به‌کارگیری رشته خاک و پیمان‌سازی تحقیق عرض گرفته شد. کشت در رفیق‌های با فاصله ۱۰ سانتی‌متر و با فاصله بتوانه نجسانتی‌متر روز روی رفیق انجام گردید. فاصله کرده‌ها از هم که محلول‌پاشی کیتوژان منجر به افزایش عملکرد ماده خشک و عملکرد اساسی در گیاه آوانی‌داری گردید. طی پژوهش دیگری مشخص شد که محلول‌پاشی کیتوژان منجر به افزایش Sultana et al., ۲۰۱۷. ارتقای تعادل گل و عملکرد گونه فرگی گردید (۲). گروهی از محققین بیان کردند که کاربرد کیتوژان منجر به افزایش سطح برگ و ماده خشک کل در گیاه دارویی آوانی‌داری گردید (Emami Bistgani et al., ۲۰۱۷).
تأیید محولیات کیتوزان بر ...

قرآنی شد و براساس رابطه زیر Biochrom libera- S22 مقدار کامازولن بر آورد گردید (IHP).

\[C = \left(\frac{(50 \times 10^3 \times E \times 184.3 \times 10^0)}{(\varepsilon \times 10^0)} \right) \times 100 \]

در رابطه بالا، C: درصد کامازولن در اساس، عدد 50: وزن گل خشک اساس گیر شده به گرم، عدد 10: حجم نهایی نمونه، عدد 184.3: وزن مولکولی کامازولن، عدد جدید قرآنی شده و 8: چند مولار کامازولن که یک بر ۲۰۰ می‌باشد.

پس از اطمینان از یکنوختی دادهها، تجزیه واریانس داده‌ها با استفاده از نرم‌افزار SAS (Ver.9) انجام شد. برای مقایسه میانگین‌ها از آزمون LSD در سطح احتمال ۵% ایجاد شد. در ضمن برای صفایی که اثر معنادار گیاهان کیتوزان و سطح مختلف کیتوزان و رتبه‌بندی آنها در سطح آب‌یاری بهطور مجزا انجام شد.

نتیجه

ارتفاع گیاه

نتایج تجزیه واریانس نشان داد که تیمار آبیاری در سطح احتمال ۱% تأثیر معناداری بر ارتقا بوته داشت (جدول ۱). نتایج مقایسه معناداری نشان داد که بیشترین ارتقا با بوته مربوط به تیمار آبیاری شاهد (۴۷/۳۹ سانتی‌متر) بود و اعمال تشک کمی منجر به کاهش ۱۴ درصدی ارتقا گیاه گردید (جدول ۳).

تعداد شاخه فرعی

در این مطالعه تعداد شاخه فرعی در گیاه تحت تأثیر تنش قرار نگرفت، ولی کیتوزان تأثیر معناداری بر صفت مذکور داشت (جدول ۲). مقایسه میانگین‌ها نشان داد که کاهش تیمار سطح دوم محلول با کیتوزان (K) منجر به افزایش ۱۰ درصدی تعداد شاخه فرعی نسبت به تیمار یک متر و فاصله بلوک‌ها از یکدیگر به‌منظور جلوگیری از اختلال تیمارها سه متر در نظر گرفته شد. براساس نیاز گیاه و تناوب آزمون خاک، ۸۰ کیلوگرم نیتروژن خالص در هکتار (از منبع کود (ویس)) در دو مرحله (۵۰٪ زمان کاشت و ۵٪ زمان نیازهای و ۶۰ کیلوگرم در هکتور ک سورت) و تهیه طرح در زمان کاشت با خاک هر کرت مخلوط (Matricaria chamomilla L.) مورد استفاده از شرکت اکسکن بذر اسکه‌ها به‌گردید و در تاریخ ۱۰ بهمن به‌صورت دستی کشته شدند. به‌منظور سهولت در کاشت بذر با بیونه، ذرده با نسبت یک به دو با ماسه بادی مخلوط شدند. پس از سبز شدن برای دستیابی به تراکم مطلوب در مرحله نش نتایج ایجاد شد. این گیاهان دردید. پس از استقرار بوته و در زمان هسته برگی گیاهان تیمارهای آبیاتی عملی شدند. پیشرفت کلی به‌صورت دستی و مدل‌های احتمالی انجام شد. و گلها در سایه خشک گیاه شدند. به‌منظور بررسی صفات مورد نظر، ۲۰ بوته به‌طور تصادفی انتخاب و صفاتی مانند ارتقا بوته، تعداد شاخه فرعی در بوته، تعداد کل آذین در بوته، ورود خشک بوته، وزن خشک بوته، وزن خشک گیاه در بوته و عملکرد گیاه ارزیابی قرار گرفتند. برای تعیین وزن خشک بوته نمونه‌ها در دمای ۱۰ درجه سانتی‌گراد تا رسیدن به وزن ثابت در داخل آن خشک شدند. برای اساس گیاه ۵ گرم یود گل بوته را به‌طور دقیق توزین کرده و به‌روش نظیری با آب ساخت استخراج شد (با استفاده از دستگاه کلوینی مدل ۵۰۴) و عملکرد اساسی از حاضر ضرب عملکرد گیاه در درصد اساس بسته بود. اندازه‌گیری مقدار کامازولن براساس روش فارماکویکه (Ghasemi Dekhordi, 2002).

گیاهی ایران انجام شد (Ghasemi Dekhordi, 2002) به‌دین‌دیدن مورد با استفاده از ۵۰ گرم خشک به بالای وزنه ۱۰ میلیلیتر انتقال یافته و با دی‌کلروراتان به حجم ۱۰ میلیلیتر رسانده شد. جذب این محلول در طول موج ه‌۲۰۰ نانومتر در دستگاه اسکنترفومتری مدل www.SID.ir
معنی‌داری در سطح آماری ۵٪ بر وزن خشک گل در بوته داشت (جدول ۱). مقایسه میانگین‌های سطح کیتونز مصرفی مشخص کرد که در این تحقیق محلول‌پاشی کیتونز در مقادیر و زمان‌های مختلف موجب افزایش ۳۳-۴۵ درصدی وزن گل خشک نسبت به تیمار شاهد گردن و بیشترین میزان صفت یادشده به تیمار‌های سطح چهارم و دوم کیتونز تعلق داشت (جدول ۴).

عملکرد گل خشک
در این پژوهش استفاده اصلی کیتونز و آبیاری تأثیر معنی‌داری بر عملکرد گل خشک گیاه با بوته آلمانی داشت (جدول ۲). مقایسه نشان داد که بیشترین عملکرد گل خشک گیاه با بوته آلمانی (۴۸۳/۲ کیلوگرم) به تیمار آبیاری تعلق داشت و تنها خشکی باعث کاهش عملکرد گل خشک گردنی (جدول ۳). در این تیمار‌های محلول‌پاشی کیتونز، بیشترین عملکرد گل خشک مربوط به تیمار K (محلولی با شدت ۵۰ میلی گرم در لیتر در ۷۰ روز پس از کاشت) به میزان ۳۵۰/۵ کیلوگرم بود و کمترین میزان عملکرد گل به تیمار عدم مصرف کیتونز (۴۶۳/۲ کیلوگرم) تعلق داشت (جدول ۴). در این آزمایش صفت عملکرد گل خشک تحت تأثیر انرژی متقابل آبیاری و کیتونز قرار نگرفت (جدول ۲).

شهادت عدم مصرف کیتونز گردنی. کمترین میزان صفت مذکور (۱۶/۲۳) تیمار K (محلول‌پاشی کیتونز با غلظت ۵۰ میلی گرم در لیتر در ۷۰ روز) تعلق داشت (جدول ۴).

تعداد گل در بوته
تجزیه و ارتباط داده‌ها نشان داد که عامل آبیاری تأثیر معنی‌داری بر تعداد گل در بوته با بوته آلمانی داشت (جدول ۱). بررسی مقایسه میانگین‌های داده‌ها نشان داد که بیشترین تعداد گل در تیمار آبیاری شاهد (۱۷/۳۲) مشاهده شد و تیمار خشکی باعث کاهش (۲۳/۶۷/۹۹/۷۱٪) تعداد گل در بوته گردد (جدول ۳). البته این صفت تحت تأثیر محلول‌پاشی کیتونز و درهم کنش آبیاری و کیتونز قرار نگرفت (جدول ۲).

وزن خشک بوته
در این پژوهش، آبیاری در سطح احتمال ۱٪ تأثیر معنی‌داری بر وزن خشک بوته در گیاه با بوته آلمانی داشت (جدول ۱). مقایسه میانگین‌ها نشان داد که بیشترین وزن خشک بوته مربوط به تیمار آبیاری شاهد (۶/۵۸ گرم) بود و تنها خشکی باعث کاهش وزن خشک گیاه به میزان ۳۷/۲۷٪ نسبت به تیمار شاهد گردنی (جدول ۳).

وزن خشک گل در بوته
تجزیه و ارتباط داده‌ها مشخص کرد که کیتونز تأثیر
جدول ۲- تجزیه واریانس اثر تنش کم آبی و کیتوزان بر وزن و طول گل خشک گیاه با بانه آلمانی (Matricaria chamomilla L.)

| سطح غیر معنی‌دار | میزان | عملکرد | میزان | عملکرد | وزن خشک | تعداد گل | ارتفاع گیاه | تیمار | آزادی گیاه | ارتفاع شاخه | تعداد گل در بوته | گل در بوته | برای بوته | پرورش |
|------------------|-------|--------|-------|--------|---------|---------|------------|-------|------------|-------------|----------------|-------------|---------|---------|-------|
| ۱ | ۰/۲۱ | ۸۸۸ | ۰/۰۸۸ | ۰/۸۸۷ | ۰/۲۵۰ | ۱/۰۷۸ | ۳۸/۲۸۸ | ۲۵/۳۲۳ | ۶/۱ | ۱/۱۷ | ۱۸/۱۲۸ | ۲۵/۳۲۳ | ۲۱/۳۴۴ | ۶/۱۷۲ |
| ۰/۴۹ | ۰/۲۸ | ۰/۰۳۷ | ۰/۰۲۴ | ۰/۰۳۷ | ۰/۲۱ | ۰/۳۷۶ | ۱۸/۲۸۸ | ۱۳/۲۸۸ | ۸/۱۴۶ | ۹/۱۷ | ۱۸/۲۸۸ | ۱۳/۲۸۸ | ۱۹/۱۷ | ۸/۱۷ |

جدول ۳- مقایسه میانگین‌های اثر آبیاری بر صفات ارتفاع گیاه، تعداد گل در بوته، وزن خشک بوته و عملکرد گل خشک گیاه با بانه آلمانی (Matricaria chamomilla L.)

<table>
<thead>
<tr>
<th>تیمار</th>
<th>میزان عملکرد گل خشک (kg.ha⁻¹)</th>
<th>وزن خشک بوته (g)</th>
<th>تعداد گل در بوته</th>
<th>ارتفاع گیاه (cm)</th>
<th>آبیاری معمول (شاهد)</th>
<th>نشانه آبیاری کم</th>
<th>نشانه تنش کم آبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶/۸۸۲/۱۴</td>
<td>۶/۲۸</td>
<td>۶/۱۳۸</td>
<td>۲۳/۰۱</td>
<td>۵۷/vb</td>
<td>آبیاری معمول (شاهد)</td>
<td>نشانه آبیاری کم</td>
<td>نشانه تنش کم آبی</td>
</tr>
<tr>
<td>۵۷/۵۱/۲۶</td>
<td>۴/۵۵</td>
<td>۴/۹۱</td>
<td>۳۷/۰۶</td>
<td>۶۸/۵۱</td>
<td>نشانه آبیاری کم</td>
<td>نشانه تنش کم آبی</td>
<td></td>
</tr>
</tbody>
</table>
جدول 4 - مقایسه میانگین‌های صفات تعداد شاخه فرعی، وزن شاخ و عملکرد گل خشک گیاه باوبونه آلمانی (Matricaria chamomilla L.) (تحت سطح مختلف محلول پاشی کیتونزان)

<table>
<thead>
<tr>
<th>محلول پاشی کیتونزان</th>
<th>عملکرد گل خشک (kg.ha⁻¹)</th>
<th>وزن شاخه گل (g)</th>
<th>تعداد شاخه فرعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁</td>
<td>449/5c</td>
<td>0/95b</td>
<td>21/42ab</td>
</tr>
<tr>
<td>K₂</td>
<td>648/5ab</td>
<td>0/78a</td>
<td>24/6a</td>
</tr>
<tr>
<td>K₃</td>
<td>620/5abc</td>
<td>0/76ab</td>
<td>18/70ab</td>
</tr>
<tr>
<td>K₄</td>
<td>738/5a</td>
<td>0/71a</td>
<td>19/62ab</td>
</tr>
<tr>
<td>K₅</td>
<td>581/5b</td>
<td>0/65a</td>
<td>16/53b</td>
</tr>
</tbody>
</table>

در هر سرویس میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، براساس آزمون LSD در سطح احتمال 5% دارای تفاوت معنی‌داری نیستند.

جدول 5 - مقایسه میانگین‌های صفات درصد و عملکرد اساسی گیاه باوبونه آلمانی (Matricaria chamomilla L.) (تحت تأثیر برهم کنش آبیاری و کیتونزان)

<table>
<thead>
<tr>
<th>کیتونزان</th>
<th>میزان اساسی (%)</th>
<th>عملکرد اساسی (kg.ha⁻¹)</th>
<th>تنش کم‌آبی آبیاری عموم (شاخه)</th>
<th>تنش کم‌آبی آبیاری عموم (شاخه)</th>
<th>تنش کم‌آبی آبیاری عموم (شاخه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₁</td>
<td>3/91d</td>
<td>4/42c</td>
<td>3/7Vb</td>
<td>0/21b</td>
<td>0/11bc</td>
</tr>
<tr>
<td>K₂</td>
<td>9/11a</td>
<td>5/28ab</td>
<td>0/64a</td>
<td>0/64b</td>
<td>2/20c</td>
</tr>
<tr>
<td>K₃</td>
<td>9/11a</td>
<td>9/76a</td>
<td>0/128a</td>
<td>0/55a</td>
<td>3/62ab</td>
</tr>
<tr>
<td>K₄</td>
<td>1/1b</td>
<td>4/33c</td>
<td>0/34b</td>
<td>0/11c</td>
<td>2/41b</td>
</tr>
<tr>
<td>K₅</td>
<td>5/19c</td>
<td>3/7Vd</td>
<td>0/42Vb</td>
<td>0/21b</td>
<td>0/11bc</td>
</tr>
</tbody>
</table>

در هر سرویس میانگین‌هایی که حداکثر دارای یک حرف مشترک هستند، براساس آزمون LSD در سطح احتمال 5% دارای تفاوت معنی‌داری نیستند.

درصد و عملکرد اساسی در این تحقیق درصد و عملکرد اساسی باوبونه به صورت معنی‌داری در مساحت آماری 1/1 تحت تأثیر کیتونزان و همچنین برهم کنش آبیاری و کیتونزان قرار گرفتند (جدول 2). در شرایط آبیاری عموم، محلول پاشی کیتونزان به میزان 125 میلی‌گرم در لیتر کیتونزان 60 روز پس از کاشت متغیر به افزایش معنی‌داری درصد اساسی باوبونه نسبت به شرایط عدم مصرف کیتونزان در گیاه باوبونه افزایش داد و حساسیت بیشتر در جدول مقایسه میانگین‌های اثره‌ای متقابل گردید (جدول 5).
بادربیان انجام شد، مشخص کننده که نشان خشکی در حد

۲۰/۰٪ رخ نمی‌آورد و راه‌های شناسایی افزایش ارتفاع بوده تولید خشکی و

عملکرد انسان‌گرایی (Safikhani et al., 2007) برنامه‌برداری نشان می‌دهد که بررسی رشد و ارتفاع گیاهان در جریان برنامه‌برداری نشان می‌دهد که بررسی ارتفاع می‌گردد.

بنابراین نشان می‌دهد که نشان خشکی از طریق کاهش سرعت رشد و ارتفاع گیاهان در مواجهه با نشان خشکی در گل‌نگ‌های گیاهی (Farrokhinia et al., 2011) و ریحان (Aslani et al., 2011) به‌طور کلی نشان داده می‌کند که کاهش رشد و تولید خشکی می‌تواند در نتیجه کاهش رشد و تولید خشکی در سطح آلاینده ادامه انجام

نگهداری می‌شود و همچنین دلیل است که کاهش ارتفاع گیاه

و اندمازه کوچک‌تر بوده است. نتایج محسوس کمیابی در گیاه‌های بررسی می‌باشد.

برای بررسی آندازه‌گیری گیاه به رشد روشی

مناسب و تولید اندازه‌گیری شکل‌دهنده آن در مراحل مختلف نشان داده و می‌تواند دهمد می‌باشد. این نتایج رشد روشی و روشی و روشی و روشی و

بنا بر این نتایج کیهان یک دیدگاه است که کاهش ارتفاع گیاه

در میان گل‌نگ‌های گیاهی به‌طور کلی نشان می‌دهد که کاهش رشد و تولید خشکی می‌تواند در نتیجه کاهش رشد و تولید خشکی در سطح آلاینده ادامه انجام

نگهداری می‌شود و همچنین دلیل است که کاهش ارتفاع گیاه

و اندمازه کوچک‌تر بوده است. نتایج محسوس کمیابی در گیاه‌های بررسی می‌باشد.

برای بررسی آندازه‌گیری گیاه به رشد روشی

مناسب و تولید اندازه‌گیری شکل‌دهنده آن در مراحل مختلف نشان داده و می‌تواند دهمد می‌باشد. این نتایج رشد روشی و روشی و روشی و روشی و

بنا بر این نتایج کیهان یک دیدگاه است که کاهش رشد و تولید خشکی می‌تواند در نتیجه کاهش رشد و تولید خشکی در سطح آلاینده ادامه انجام

نگهداری می‌شود و همچنین دلیل است که کاهش ارتفاع گیاه

و اندمازه کوچک‌تر بوده است. نتایج محسوس کمیابی در گیاه‌های بررسی می‌باشد.

برای بررسی آندازه‌گیری گیاه به رشد روشی

مناسب و تولید اندازه‌گیری شکل‌دهنده آن در مراحل مختلف نشان داده و می‌تواند دهمد می‌باشد. این نتایج رشد روشی و روشی و روشی و روشی و

بنا بر این نتایج کیهان یک دیدگاه است که کاهش رشد و تولید خشکی می‌تواند در نتیجه کاهش رشد و تولید خشکی در سطح آلاینده ادامه انجام

نگهداری می‌شود و همچنین دلیل است که کاهش ارتفاع گیاه

و اندمازه کوچک‌تر بوده است. نتایج محسوس کمیابی در گیاه‌های بررسی می‌باشد.

برای بررسی آندازه‌گیری گیاه به رشد روشی

مناسب و تولید اندازه‌گیری شکل‌دهنده آن در مراحل مختلف نشان داده و می‌تواند دهمد می‌باشد. این نتایج رشد روشی و روشی و روشی و روشی و

بنا بر این نتایج کیهان یک دیدگاه است که کاهش رشد و تولید خشکی می‌تواند در نتیجه کاهش رشد و تولید خشکی در سطح آلاینده ادامه انجام

نگهداری می‌شود و همچنین دلیل است که کاهش ارتفاع گیاه

و اندمازه کوچک‌تر بوده است. نتایج محسوس کمیابی در گیاه‌های بررسی می‌باشد.

برای بررسی آندازه‌گیری گیاه به رشد روشی

مناسب و تولید اندازه‌گیری شکل‌دهنده آن در مراحل مختلف نشان داده و می‌تواند دهمد می‌باشد. این نتایج رشد روشی و روشی و روشی و روشی و

بنا بر این نتایج کیهان یک دیدگاه است که کاهش رشد و تولید خشکی می‌ت
مشخص شد که با کاهش میزان آب و ایجاد نشی، ارتفاع بوته، وزن تر بوده و وزن خشک بوته در گیاه ریحان کاهش یافت (Aslani et al., 2011). گزارش‌های مشابهی نیز در زمینه تأثیر سوء تنش خشکی بر رشد گیاه باوبند و کاهش ارتفاع و عملکرد گل باوبند ارائه شده است. (Baghalian et al., 2008). همچنین مطالعه گیاه جعفری در شرایط نشی خشکی نشان داد که خشکی سبب افزایش میزان گیاه جعفری شد. در حالی که عملکرد ماده خشک گیاه را کاهش داد (Cho et al., 2008). گروهی از پژوهشگران گیاه دارویی مریم گل را در شرایط نشی کم‌آب مورد بررسی قرار دادند و از آن‌ها نتیجه گرفتند که افزایش اصفهانی کاهش ارتفاع، کاهش سطح برگ و کاهش وزن خشک ادامه همیل گیاه در شرایط نشی مشاهده گردید (Bettaieb et al., 2009). در شرایط کم‌آبی کاهش ماده خشک می‌تواند به‌طور فعال آماده ساری‌رود از کاهش سطح برگ گیاه بیشتر در شرایط نشی گیاه سطح برگ خود کاهش داده و همین امر به کاهش تولید مواد فتوسنتزی و در نهایت به کاهش وزن خشک گیاه منجر می‌گردد.

نشریه‌ای به‌منظور می‌رسد که تنش خشکی با ایجاد اخلاقل در رشد روستی و زایش گیاه در نهایت منجر به کاهش عملکرد گیاهان می‌شود. در این آزمایش‌ها نیز اعمال تنش خشکی منجر به کاهش 21 درصدی عملکرد گل خشک نمی‌باشد به‌طور اجمالی می‌توان گفت که این نتیجه با گزارش‌های مطالعاتی پیشین مطابقت داشته است. (Afzali et al., 2007). عملکرد گل در گیاه باوبند در مجموع حاصل برهم گسترش اجزایی است که هر یک از آنها در مراحل مختلف رشد روستی و زایشی به‌صورت مستقل یا مجموعی در این بین ماده خشک گیاه (عملکرد پولی‌ورژیک) ارتفاع بوته، تعداد ساقه و تعداد گل در هر بوته به‌عنوان مهم‌ترین اجزای عملکرد گل محسوب می‌شود.

در این بررسی مشخص شد که محلول‌هایی کیتوزان به میزان 125 میلی‌گرم در لیتر ۶۰ روش پس از کاشت (زمان ساقه‌دهی گیاه) موجب افزایش ۱۰ درصدی تعداد شاخه‌های گیاه گزارش شد که با کاهش میزان آب و ایجاد نشی، ارتفاع بوته، وزن تر بوده و وزن خشک بوته در گیاه ریحان کاهش یافت (Aslani et al., 2011). گزارش‌های مشابهی نیز در زمینه تأثیر سوء تنش خشکی بر رشد گیاه باوبند و کاهش ارتفاع و عملکرد گل باوبند ارائه شده است. (Baghalian et al., 2008). همچنین مطالعه گیاه جعفری در شرایط نشی خشکی نشان داد که خشکی سبب افزایش میزان گیاه جعفری شد. در حالی که عملکرد ماده خشک گیاه را کاهش داد (Cho et al., 2008). گروهی از پژوهشگران گیاه دارویی مریم گل را در شرایط نشی کم‌آب مورد بررسی قرار دادند و از آن‌ها نتیجه گرفتند که افزایش اصفهانی کاهش ارتفاع، کاهش سطح برگ و کاهش وزن خشک ادامه همیل گیاه در شرایط نشی مشاهده گردید (Bettaieb et al., 2009). در شرایط کم‌آبی کاهش ماده خشک می‌تواند به‌طور فعال آماده ساری‌رود از کاهش سطح برگ گیاه بیشتر در شرایط نشی گیاه سطح برگ خود کاهش داده و همین امر به کاهش تولید مواد فتوسنتزی و در نهایت به کاهش وزن خشک گیاه منجر می‌گردد.

نشریه‌ای به‌منظور می‌رسد که تنش خشکی با ایجاد اخلاقل در رشد روستی و زایش گیاه در نهایت منجر به کاهش عملکرد گیاهان می‌شود. در این آزمایش‌ها نیز اعمال تنش خشکی منجر به کاهش 21 درصدی عملکرد گل خشک نمی‌باشد به‌طور اجمالی می‌توان گفت که این نتیجه با گزارش‌های مطالعاتی پیشین مطابقت داشته است. (Afzali et al., 2007). عملکرد گل در گیاه باوبند در مجموع حاصل برهم گسترش اجزایی است که هر یک از آنها در مراحل مختلف رشد روستی و زایشی به‌صورت مستقل یا مجموعی در این بین ماده خشک گیاه (عملکرد پولی‌ورژیک) ارتفاع بوته، تعداد ساقه و تعداد گل در هر بوته به‌عنوان مهم‌ترین اجزای عملکرد گل محسوب می‌شود.

در این بررسی مشخص شد که محلول‌هایی کیتوزان به میزان 125 میلی‌گرم در لیتر ۶۰ روش پس از کاشت (زمان ساقه‌دهی گیاه) موجب افزایش ۱۰ درصدی تعداد شاخه‌های گیاه
نتایج این تحقیق حکایت از آن دارد که نشان دهنده مشخصات افراد یا گزارش‌هایی که با کاربرد استرس در شرایط مختلف به تاثیر قوی افراش و عملکرد این گیاه در برابر آبی‌ارض و دیگر عوامل استرس و نیازهای خاصی گیاهان مربوط به فعالیت‌های زمین‌شناسی و مسیرهای بیوتکنولوژی متفاوت در جهت تولید محصولاتی در بی‌بی‌بی‌بینی‌های بیشتری است.

در آزمایشات به منظور بررسی نشان دهنده مشخصات افراد ولایت مورد نظر با انجام مطالعات کمکی کاربرد این سر که یک از نشان‌های خاص در شرایط آب و هوایی مناسب در بی‌بی‌بی‌بینی‌های زمین‌شناسی و مسیرهای بیوتکنولوژی متفاوت در جهت تولید محصولاتی در بی‌بی‌بی‌بینی‌های بیشتری است.

- Omidbaigi et al., 2003. Karamir and Kizhian in different conditions, its effects on the skin. www.SID.ir

www.SID.ir

Effects of chitosan foliar application on quantitative and qualitative characteristics of German chamomile (*Matricaria chamomilla* L.) under water deficit stress conditions

M.S. Dehghani¹, M. Naeemi²*, E. Gholamalipour Alamdari³ and H. Jabbari⁴

¹- M.Sc. student, Department of Crop Productions, Faculty of Agricultural and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
²*- Corresponding author, Department of Crop Productions, Faculty of Agricultural and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran, E-mail: Naeemi_701@yahoo.com
³- Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
⁴- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Received: May 2018 Revised: November 2018 Accepted: November 2018

Abstract

In order to evaluate the effects of chitosan foliar application under water deficit stress conditions on quantitative and qualitative characteristics of German chamomile (*Matricaria chamomilla* L.), a study was conducted based on randomized complete blocks design with factorial arrangement of treatments and three replications at Gonbad Kavous University research field, Iran in 2014 growing season. Treatments included irrigation at two levels, irrigation after 60 mm evaporation from class A pan and 100 mm evaporation from class A pan, and chitosan spraying at five levels including non-application of chitosan (spraying with distilled water as control (K₁)), chitosan spraying at 125 mg/l after 60 days of planting (K₂), 125 mg/l after 75 days of planting (K₃), 250 mg/l after 60 days of planting (K₄) and 250 mg/l after 75 days of planting (K₅). Results showed that water deficit stress decreased the plant height, number of flowers, plant dry weight and flower dry yield. Foliar application of chitosan increased the number of branches per plant and flower dry yield. Results indicated that utilization of second level of chitosan under stress and third level of chitosan under normal irrigation improved the chamazulen essential oil percentage and yield. According to results of this study, application of chitosan spraying at 125 mg/l after 60 days of planting under deficit water stress conditions caused the highest percentage and yield of essential oil and chamazulene percentage. In general, in order to prevent and reduce the damage of water stress as well as increased chamazulene, the use of bio-polymer chitosan as a natural material in German chamomile is important.

Keywords: Essential oil, bio-polymer, flower yield, chamazulene, chitosan.