ارزیابی تأثیر نانوذرات سیز اکسید مس (CuO) بر مهار فارج Botrytis cinerea

عمال بیماری کیک خاکستری گوجه فرنگی

سیما کاظمیان، 1، وحید زرین‌پناه، 2 محمد خسروشاهی، 2 و دار حسن‌زاده 2

1- کارشناس ارشد، گروه بیوتکنولوژی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، ناهاریه، ایران
2- نویسنده سرود. استادیار، گروه بیوتکنولوژی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، ناهاریه، ایران

پست الکترونیک: zarrinnia@gmail.com

چکیده

آزمایشاتی که در این مقاله انجام گرفته‌اند از مهار بیماری کیک خاکستری گوجه فرنگی در برابر سایه اگزسید سبز جاریه که با داشتن نانوذرات سیز اکسید مس سبز در زمان جاریه او در جریان شرایط گرما و مرطوبات توانم بیماری کیک خاکستری را کاهش دهند نتایج نشان داده و نشان داد که در تمامی شرایط گرما و مرطوبه و بیماری کیک خاکستری و پیشگیری از رشد بیماری یک بیماری کیک خاکستری در شرایط گرم و مرطوبه بهره‌مندی از این نانوذرات در کاهش رشد و بلوکه کار گیاهی و بهبود کیفیت محصول نقش داشته.

唔های منابع

1- کارشناس ارشد، گروه بیوتکنولوژی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، ناهاریه، ایران
2- نویسنده سرود. استادیار، گروه بیوتکنولوژی کشاورزی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، ناهاریه، ایران

نیازمندی چکیده: نام آگه سیز اکسید مس، بیماری کیک خاکستری، گوجه فرنگی.
مقدمه

میوه‌ها و سیب‌جات تازه، از آغاز تاریخ بخشی از زینت غذایی شیر بوده‌اند و اهمیت کامل غذایی آنها در سال‌های اخیر به‌طور کامل مشخص شده است (راحمی، 1382). گوجهفرنگی یکی از سیب‌جات اصلی است که در بیشتر کشورهای دنیا در زمینه‌های زراعتی و گلخانه‌ای کشت می‌شود. تولید گوجهفرنگی طی 32 سال گذشته به سرعت توسعه یافته‌است (Bhatia et al., 2004). اسپوروزی جوجه‌ی گوجهفرنگی جزء سیب‌جات مهم در رشته غذایی انسان است و علی‌رغم من اینکه وجود انواع والانمی، زیرانی، و یونانی های گردو، ب. کارتون (Pinot-Saz و Pinot-Saz؛ 2004) و اصلاح مندی والانمی، سفید نفر و کلسم است که به مادی زیادی در آن بافت می‌شود و واقف (2007) می‌گوید مزارع و گلخانه‌های جوجه‌ی گوجه‌فرنگی می‌توانند به‌طور کمیک خاکستری باعث ایجاد می‌شووند. بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) در جوانه‌های کشاورزی، بیماری سایر بیماری‌های گلخانه‌ای در این منطقه به‌نام B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی قرار گرفته، بنابراین به شرایط محیطی مختلف و مواد بهره‌مندی که به‌طور کمیک خاکستری باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) بیماری سایر بیماری‌های گلخانه‌ای در این منطقه به‌نام B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی قرار گرفته، بنابراین به شرایط محیطی مختلف و مواد بهره‌مندی که به‌طور کمیک خاکستری باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) بیماری سایر بیماری‌های گلخانه‌ای در این منطقه به‌نام B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی قرار گرفته، بنابراین به شرایط محیطی مختلف و مواد بهره‌مندی که به‌طور کمیک خاکستری باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) بیماری سایر بیماری‌های گلخانه‌ای در این منطقه به‌نام B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی قرار گرفته، بنابراین به شرایط محیطی مختلف و مواد بهره‌مندی که به‌طور کمیک خاکستری باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی قرار گرفته، بنابراین به شرایط محیطی مختلف و مواد بهره‌مندی که به‌طور کمیک خاکستری باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی C. myricola (2007) می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی مورد بررسی C. myricola (2007) می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای در بخش‌های مختلف کشاورزی M. fructicola (2007) می‌باشد. در سال‌های اخیر، ب. کاپتی به‌طور گسترده‌ای باعث ایجاد می‌توانند، از بیماری Botrytis cinerea B. Botryotinia fukeliana (tel) یا ب. کاپتی (B. cinerea) B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های اخیر، B. cinerea و B. Botryotinia fukeliana می‌باشد. در سال‌های
بر روی باکتری‌های جانوری مانند Escherichia coli و Staphylococcus aureus مثبت بود (Feng et al., 2000; Ingle et al., 2008) و مشاهده شد که نانوذرات نهایی 16 نانومتر و در غلظت بین 40 تا 60 میلی‌گرم در میلی‌لیتر برای باکتری‌های Lamsal (2011) با استفاده از Bragg رایانه‌ای Lepisanthe tetraphylla نانوذرات با حمود اندازه 50-90 نانومتر تولید کردند و بعد از نانوذرات تولید شده را بر عوامل بیماری‌زا انسانی بررسی کردند. با استفاده Escherichia coli Staphylococcus aureus ساخته می‌گردد که با این نانوذرات برای تولید اندازه Salmonella paratyphi و Pseudomonas aeruginosa Klebsiella pneumonia Mahapatra & Khan (2007) همجین نانوذرات مس. قادر به مهار Saccharomyces cerevisiae Escherichia coli Staphylococcus aureus و Staphylococcus aur. Pseudomonas aeruginosa که نانوذرات تولیدید مس و عوامل مشابه موارد مایکروکوبی برای میکروبا به‌وسیله Candida albicans Acinetobacter و Pseudomonas aeruginosa می‌تواند در این نتایج بررسی که نانوذرات نهایی از طیف ورود لیزر و دما به دست آمده است (Ingle et al., 2008). }
آزمایش‌گاهی

اثر ضاربی قارچی نانوذرات سنتر شده در شرایط

مستر و تایید نانوذرات سیز اکسید مس

برای این منظور ابتدا محلول ۱/۰۰ مولار از سولفات مس (CuSO₄) تهیه و روی هیپر قرار داده شد. در محله به عداصاره اکالیپتوس به نسبت ۱:۵۰ به سولفات مس به صورت طبقه و عداصاره داده شد تا دما به ۸۰-۷۰ درجه سانتی‌گراد در آرامی افزایش یابد. بعد از آن محلول به مدت یک ساعت در دمای اتاق اکالیپتوس گردید. در طول مدت اکالیپتوس با احیای مس فازی نگهداری شده که محلول به مور می‌گردد. به عداصاره تیتر میلی بالا به تغییر یافتد. این تغییر را نشان دهنده احیای بیان فازی مس به نانوذرات پایدار است. به منظور بررسی خاصیت کریستالی، ساختار و اندازه کریستال‌های نانوذرات اکسید مس از تکنیک Rigaku-Miniflex X-ray diffract meter استفاده از Cu-Kα (Rigaku Corporation, Tokyo, Japan) به نام C-A Tats (CuKα) در گستره ۲θ از ۲۰ تا ۸۰ درجه استفاده شد. برای مشاهده خصوصیات ریخت‌شناوی نانوذرات تولید شده و اندازه آنها از میکروسکوپ الکترونیکی روشنی

قطر کانی تیمار (Minimum Inhibitory Concentration) MIC

حداصل غلظت مهارکننده از رشد قارچی با حداصل غلظت Minimum Fungicide (MFC) نانوذرات

حداصل غلظت های مختلف غلظت کانی‌های فیلم‌سازی قارچی از غلظت هایی که در آنها ۱۰۰٪ بازدارندازی مشاهده شد. به‌عنوان حداصل غلظت بازدارندازی تعیین شد. همچنین به‌عنوان تعیین حداصل غلظت کانی‌های بازدارندازی قارچی از غلظت هایی که در آنها ۱۰۰٪ بازدارندازی مشاهده شد.
ارزیابی تأثیر نانو ذرات اکسید مس بر مهار کیک‌خاکستری در شرایط گلخانه روی گیاه‌های بومی

به‌منظور ارزیابی تأثیر نانو ذرات اکسید مس بر آفتاب‌شکنی، سطح مقاومت گوجه‌فرنگی نسبت به بیماری کیک‌خاکستری، گیاه گوجه‌فرنگی در گلخانه تا مرحله نه پنج بزرگی کشت داده شد. در اثر غلظت‌های 400، 800، 1200 و 1600 قسمت در میلیون بر هزار عامل بیماری مورد بررسی قرار گرفت. برای هر غلظت مورد مطالعه 3 تکرار در ترتیب مختلف شد و هر تکرار شامل 30 نمونه بود. آب مقطع سترون نیز به‌عنوان شاهد نمونه و سوسیانس اسپری تهیه شده و در هر تکرار، 3 سیلادا به دامنه ای در ترتیب مختلف شد. به‌منظور انجام آزمایش، گیاهان ابتدا با غلظت‌های 400، 800، 1200 و 1600 قسمت در میلیون نانوژره تلفیق شدند. آنگاه بعد از گذشتن 12 ساعات شب، سوسیانس اسپری از قارچ B. cinerea به غلظت‌های 400، 800، 1200 و 1600 قسمت در میلیون بر هزار عامل بیماری مورد بررسی در سطح گیاه با پوشش دهد. ارزیابی شدت بیماری با مقياس صفر تا پنج مطابق با روش Salikjaris (2004) به‌کل نتایج روز پس از تلفیق انجام شد (جدول 1).

ارزیابی تأثیر نانو ذرات اکسید مس بر مهار کیک‌خاکستری روی برق بردی

برای بررسی تأثیر نانو ذرات اکسید مس بر مهار کیک‌خاکستری روی برق بردی قسمت میلیون از نانوذرات اکسید مس روی برق بردی 800 و 14 مورد بر روی گرگرهای شده بود خارج و به‌منظور کشت سبزی‌زمینی دکسترول آگار PDA منتقل گردیدند. جنگل‌های قارچ‌ها در این محیط رشد نمی‌کردند. غلظت که قارچ از آن جدا شده بود به‌عنوان حداقل غلظت قارچ ایستگاه توجه قرار گرفت (Sobhani et al., 2014).

جدول 1- مقایسه یکار رفتی در ارزیابی شدت بیماری در آزمون گلخانه‌ای

<table>
<thead>
<tr>
<th>شاخص</th>
<th>شدت بیماری</th>
<th>توصیف شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>بدون رخمه به‌کل</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>زخم با که‌هایی به قطر 1-2 میلی‌متر</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>زخم با که‌هایی به قطر 2-4 میلی‌متر</td>
<td>سطح بابت</td>
</tr>
<tr>
<td>3</td>
<td>زخم با که‌هایی به قطر 4-8 میلی‌متر</td>
<td>سطح بابت آلوئه باشد</td>
</tr>
<tr>
<td>4</td>
<td>زخم با که‌هایی به قطر 8-16 میلی‌متر</td>
<td>سطح بابت آلوئه باشد</td>
</tr>
<tr>
<td>5</td>
<td>زخم با که‌هایی به قطر بیشتر از 16 میلی‌متر</td>
<td>سطح بابت آلوئه باشد</td>
</tr>
</tbody>
</table>

طرح آزمایشی و تجزیه و تحلیل داده‌ها

تعمیم آزمایش‌ها به‌صورت فاکتوریال در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. داده‌های حاصل با استفاده از نرم‌افزار آماری SAS 9.1 تجزیه آماری شده و مقایسه میانگین‌ها با آزمون چند دمایه‌ای داکسکین در سطح احتمال 1% (P < 0.01) انجام شد. نرمال بودن تمام داده‌ها قبل از انجام بررسی‌های آماری توسط نرم‌افزار Minitab 14 مورد بررسی قرار گرفت.
نتایج

ارزیابی نانوذرات اکسید مس سنتر شده
الف) نتایج میکروسکوپ الکترونی رویشی (SEM).

نتایج:

حاتمی از طیف‌سنجی با پراش X-ray diffraction (XRD) پراش پراش

پراش XRD (XRD) با استفاده از سیستم تولید شده طیف پراش

XRD (XRD) مورد بررسی قرار گرفت. پراش طیف

تشکیل نانوذرات اکسید مس تا مرحله را مورد تأیید قرار
dاد (شکل 1).

شکل 1 - طیف پراش پراش XRD (XRD) نانو ذرات اکسید مس (CuO)

شکل 2 - تصویر میکروسکوپ اسکن الکترونی از نانوذرات اکسید مس سنتر شده توسط گیاه‌آکاپتوس

www.SID.ir
بررسی اثر قارچی نانوذرات بیوتئز شده در شرایط آزمایشگاهی (in vitro)

آزمایشگاهی (in vitro) بررسی کلی اثر غلظت‌های مختلف نانوذرات کلسیم مس تولید شده توسط گیاه آکالینیتوس بر رشد قارچ

درآمده که با افزایش غلظت نانوذرات روند درصد پاک‌پوش‌گی رابطه ختی مکشوف و معنی‌دار می‌باشد. بی‌توجهی نمایانگر این واقعیت حساسیت که یک رابطه ختی مکشوف و معنی‌دار در بین آن‌ها غلظت نانوذرات کلسیم مس و قطر کالی قارچ مذکور وجود دارد. بی‌توجهی دیگر می‌توان کفت.

![_chart1](https://via.placeholder.com/150)

شکل 3- مقایسه میانگین درصد پاک‌پوش‌گی غلظت‌های مختلف نانوذرات کلسیم مس (in vitro) در شرایط آزمایشگاهی (B. cinerea)

![chart2](https://via.placeholder.com/150)

شکل 4- مقایسه میانگین شدت بیماری در گیاهان تیمار شده با قارچ در مقایسه با گیاهان تیمار شده با غلظت‌های مختلف نانوذرات کلسیم مس
پرسی اثر ضد قارچی نانوذرات اکسید مس روی شدت بیماری کیک خاکستری در شرایط درون زیست (in vivo) نتایج این بخش از آزمون نشان داد که بین غلتچی‌های مختلف نانوذرات اکسید مس، زمان‌های مختلف نانو‌برداری و اثر منتفی آنها تفاوت معنی‌داری در سطح غلظت مشاهده نشده و نتیجه آزمایش‌ها از احتمال 1% (P<0.01) وجود داشته است. در تمامی تیمارها، بیشترین شدت بیماری در روز پنجم‌اول بعد از تلقیح مشاهده شد. همچنین در تمامی روش‌های مورد بررسی شد بیماری در گیاهان تیمار شده با غلتچی‌های مختلف نانوذرات نسبت به گیاهان شاهد منفی (گیاهان تیمار شده با خاک سالم) بالاتر بود. این امر نشان دهنده عدم موفقیت این غلظت‌ها در مهار مناسب بیماری می‌باشد. حال امکان در غلظت‌های بالاتر بیماری به خوبی مهار شده و در غلظت‌های 1200 قسمت در میلیون شدت بیماری به صفر رسیده بود (شکل 5).

شکل 5 - مقایسه تأثیر غلظت‌های مختلف نانوذرات اکسید مس بر میانگین شدت بیماری ناشی از در روزهای مختلف نانو‌برداری B. cinerea

احتمال 1% (P<0.01) و وجود داشت. با این حال بین اثر مقایل آنها از نظر آماری تفاوت معنی‌داری مشاهده نشد. در تمامی تیمارها، با افزایش افزایش منفی‌های بعد از تلقیح میانگین شدت بیماری به مور افزایش یافت. اگرچه در تمامی روزهای نانو‌برداری میانگین شدت بیماری در ارزیابی تأثیر نانوذرات اکسید مس بر مهار بیماری کیک خاکستری رونده بررسی بین غلظت‌های مختلف نانوذرات اکسید مس و زمان‌های مختلف نانو‌برداری تفاوت معنی‌داری در سطح
دانسته‌ها: به‌گونه‌ای که میزان شدت بیماری در گیاهان تیمار شده با نانوذرات نسبت به بکر گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌برداری می‌گردید.

(۷) فاصله و فاصله تیمارهای نسبت به بکر این گیاهان تیمار شده با فاصله ۱/۱۰ بود، باعث تفاوت معنی‌داری در سطح احتمال ۱% (P≤۱%) از تفاوت در روزهای نمونه‌بردا
تغییرات ساختاری و آسیب سلول میگرده و اثر ترکیب
فلایات‌های جیبانی سلول مانند نفوزیمیک و فعالیت
آنتی‌بیوتیک زنجیره‌گذاری را مخلوط و در همانی منجر به
مرک سلول میشود. نانوآورهای اسیدکسیس بی‌آبی، میکروب‌های
فیتوپاتیک و بیماری‌های ریزورمه پاسخگویی کلی به
راتیکال‌های اکسیژن و آزادی در سلول‌های کاهش دهنده
(Bondarenko et al., 2012)

نانوآورهای استفاده شده از ایرانی بررسی بوده‌است.
پیلوژیک و توسط گیاه کالیپسیوس بوستونت شده بود که در
گزارش‌های معتبری بالای آن ابطاب ریسپید است.
مهمکاران (2011) نشان دادند که نانوآورهای
تقریبی تولیدی توسط پودر سافه (گیاهان بومی هند) بالاترین
فلایات ضدپاتوکریایی را علیه DNA آنتی‌بیوتیک و
پیچیده‌ترین فعالیت ضد فلایاتی را علیه Rhizopus sp. و
Fusarium sp. و Aspergillus sp. یافتند. همچنین نانوآورهای
تقریبی تولیدی توسط گیاه Svensonia hydrobodensis
بالاترین فعالیت ضدپاتوکریایی
با این نمایندگیها
Bacillus sp. و Klebsiella sp. E. coli و
Rhizopus sp. Fusarium sp. Aspergillus sp.
ارا علیه
به خود نشان داد
Curvularia sp. و Aspergillus sp. یافتند.
(Savithramma et al., 2011)

اگرچه بررسی‌های آزمایشگاهی روی خویی برای
ارزیابی مقدامات تأثیر نانوآورهای در مهار فلایاتی باند، اما
براساس تأثیر آزمایشگاهی به‌نمونه‌نگر نیز می‌توان به مفید بودن
اثر این نانوآورهای میزان واقعی آنها بر روی نیاز سردم
نظیر بی‌رد. زیرا در شرایط آزمایشگاهی میزان اثر این
نانوآورهای روی میکروکبی‌های است. در این
مناسبت برای رشد نانوآورهای میگرده اما در
شرایط گلخانه، عوامل میزان مانند در دمای آن، اسیدیت،
رطوبت، رفتار خاک و رفتار سایر میکروگابانس‌ها مأثر
می‌باشد. اگرچه روی آسب مها می‌توان به اینکه از
سرویش‌های این

بحث
اطلاعات اندکی در مورد فعالیت ضدپاتوکریایی نانوآورهای
کسیدسیس (CuO) در دسترس است. نانوآورهای کسیدسیس
از بسیاری از ترکیب‌های با فعالیت ضدپاتوکریایی از
قبل طلا و نقره از تشکیل است و به آسایش با پلیمرها مخلوط
می‌گردد و از لحاظ فیزیکی و شیمیایی نسبتاً پایدار است
(Xu et al., 1999). نانوآورهای CuO در میان دارای فعالیت از گرم برای کاربرد بی‌عنوان
عوامل ضدپاتوکریایی می‌باشد و می‌تواند به‌ناهجی سطحی
فسی و مورفولوژی، یا به‌کارگیری سطحی به‌ناهجی سطحی
(Rozen, 2002)

نتایج
استاده است. از نظر متقابلی فلایات می‌باشد. در محدوده
کسیدسیس در میان پدیده‌ها سه پزشکی می‌باشد. "PDA" در
زمان‌های مختلف در این تحقیق
نشان داد که بین تیمارها و زمان‌های مختلف تفاوت معنی‌داری
در سطح احتمالی (P<0.05) وجود داشت. این کاربرد
نانوآوره‌ها با رفتن لغزش آنها افزایش باقی است و در
غفلت‌های بالاتر این نانوآوره خاصی قارچ‌کشی داشته.

نایر نانوآوره‌های کسیدسیس در گلخانه‌های بالا در

نتایج 2002 (Shah and Wani) که اثر نانوآوره‌های روزی
و اکسید کسیدسیس را بر روی قارچ‌های
Rhizopus stolonifer Fusarium oxysporum
بررسی می‌کردند، متقابلی نتایج بدست‌آمده در این
تحقیق با نتایج کاربرد سیلیکا در کاهش تولید اسپور
(Park et al., 2006), قارچ B. cinerea
می‌باشد. همکاران (2010) نیز بیان کرده که
نانوآوره‌های فلایات، نانوآوره‌های طلا و نانوآوره‌های
لیزری به‌خوبی واکنش دارند. این محققان با
استفاده از میکروکبی‌های الکترونی تغییرات مورفولوژی
حالم از پاتوکریایی میکروگابانس‌ها و نانوآوره‌های سردم
بررسی قرار دادند و نشان داد که این بی‌همگیت باعث
آسیب دیدن سلول‌های قارچ می‌شود. نانوآوره‌های سطحی
سلول میکروگابانس‌ها ت محلی می‌شود و این اتصال باعث

www.SID.ir

www.SID.ir
نمونه مورد استفاده

دسترسی به تحقیق نانوذرات پس از وارد شدن به یافته‌گاه اطلاعات کاملی در برخورد بر می‌باشد. شاید در این سطح نانوذرات قدرت توسط برخی بستگی‌ها نباشد.

در سال‌های گذشته مردان سه و شش میلیاردهای سالتر و زندیه‌های سالتر و کاراکتر را برای دستیابی به علم و افسانه‌های آزمایشگاهی غلظت‌های بالاتر تأثیر مؤثری در سه می‌باشد.

دانش‌آموختگان شیمی‌دانی قدرت به مهار بیماری بودند. از آنجایی که در این پژوهش تحقیق نانوذرات اکسید سه ساعت زودتر از فارگر عامل بیماری بالاتر گیاه تلقیح شدند و همچنین روی برگ برده‌های سه ساعت زودتر تلقیح شدند. بالاروند ناحیه حکایت از مؤثر بودن کاربرد پیشگیری این ترکیب ها در مهار بیماری دارد. به عبارتی دیگر، مشاهدات گل‌نگاری نشان داد که گل‌نگاری از نانوذرات بالای از اینکه فارگر عامل بیماری درون بی‌آسیا نفوذ کرده و باید هم را کلونیزه کند. مؤثرتی مشابه لامسل و همکاران (2011) نانوذرات نیاز از پر روز در فارگر Sphaerotheca و Golovinomyces cichoracearum cinerea بیشتری در مقایسه با سایر فارگرها اینکه با تاثیب این تحقیق طبیعت دارد.

در این تحقیق نانوذرات بیست و ششم دهه به گیاه که سایز نانوذرات داشته در مصارف بیماری مؤثر واقع شده است که طرفینه‌های Lit و همکاران (2009) امید وارده، رومولوژی و غلظت‌های در فعالیتی ضدمیکروبی نانوذرات بسیار تبعیضی کننده می‌باشد. این به جهت اندوزه دراز کوجکه‌باد (15 تا 30 نانومتر) از ضدمیکروبی نانوذرات بدلیل افزایش بخشهای بی‌چسب و برخی مشکلات ممکن و غلظت بالاتر باشند درجه تأثیرگذاری آنها بالاتر می‌باشد. محیط پیشگیری تأثیر نانوذرات سنتی شده طبعی یا بیولوژیکی را با نانوذرات سبیلی مقایسه کرده و به این ترتیب نشان داد که تأثیرگذاری نانوذرات بیولوژیک در مهار بیماری‌های گیاهی بالاتر از نانوذرات سبیلی است.

همکاران (2011) و Joerger

- Hua, L., Yong, C., Zhanquan, Z., Boqiang, L., Guozheng, Q. and Shiping, T., 2018. Pathogenic mechanisms and control strategies of Botrytis
activity of two plant essence on the qualitative and quantitative characteristics of strawberry fruit during storage condition. International Journal of Advanced Biological and Biomedical Research, 2(7): 2238-2246.

Investigation on the control effects of green copper oxide (CuO) nanoparticles on the tomato gray mold disease caused by *Botrytis cinerea*

S. Kazemian¹, V. Zarrinnia²*, M. Khosroshahli¹ and N. Hasanzadeh³

1- Department of Agricultural Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2* - Corresponding author, Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
E-mail: zarrinnia@gmail.com
3- Department of Plant Protection Science and Research Branch, Islamic Azad University, Tehran, Iran

Received: November 2017 Revised: November 2018 Accepted: November 2018

Abstract

Tomato gray mold disease, caused by *Botrytis cinerea*, is one of the most important tomato diseases. In recent years, the application of nanoparticles for the control of plant diseases has been given special attention. In this research, the effect of copper oxide nanoparticles biosynthesized by plant extract of eucalyptus was investigated. Three experiments were conducted in order to control the severity of gray mold disease under different growth conditions. In the first experiment, the effects of nanoparticles at concentrations of 100, 200, 400 and 600 ppm were investigated. In the second experiment, two more concentrated extracts i.e. 800 and 1200 were investigated. In the third experiment, the effect of three concentrations of 400, 600 and 800 ppm of copper oxide nanoparticles on the severity of mildew disease on detached leaves was investigated. The results of all three experiments indicated that 1) Copper oxide nanoparticles can control the growth of *B. cinerea* and gray mildew disease in both *in vitro* and *in vitro* conditions. 2) The relationship between the concentration of copper oxide nanoparticles and the inhibitory effect on fungal growth and disease control was invertible and significant at 1% probability level (*P*≤1%). In fact, the most effective concentrations were obtained at 400 and 600 ppm, 800 and 1200 ppm, and 600 and 800 ppm under *in vitro*, *in vivo*, and detached leaf assay, respectively. Accordingly, with increasing concentrations of copper oxide nanoparticles, the rate of growth of the fungus colony decreased and the severity of the disease decreased. Based on these results, the application of green synthesized copper oxide nanoparticles was recommended in controlling of gray mold disease caused by *Botrytis cinerea*.

Keywords: Green copper oxide nanoparticles, *Botrytis cinerea*, tomato, gray mold.