تأثیر عصاره جوانه گندم بر ساختار هیستوژوئیک و هیستومتریک بیضه و پارامترهای اسپرم موش صحرایی مواجهه شده با سرب

حسن مرتضی، حمید رضا مرازی مسعود ادبی مرادی، محمد نیکی متینی، جواد سالار املی

کلیه: مطالعه بررسی تأثیر عصاره جوانه گندم بر ساختار هیستوژوئیک، هیستومتریک و پارامترهای اسپرم موش اندرناک از نگاه اسپرمولوژیکی تا جنبه‌های فیزیولوژیک و بیولوژیکی بیضه و اسپرم موش صحرایی مستلزم است.

چکیده

zmیانگین مطالعه، جوانه گندم غنی از آنتی اکسیدان‌ها و ویتامین‌ها (بخصوص ویتامین E) می‌باشد. مواد معدنی و ترکیبات تریتوترونیمی می‌باشد. گیاهانی که به مصرف به سیستم ایمنی و بیماری‌های معده گندم و ویتامین E بیشتر سرشار از تریتوترونیمی هستند و هم‌و هم‌درمانی یافته‌اند. در این تحقیق شناسی و یکسان شدن استفاده از نگاه سرب در مورد اسپرمولوژیکی و بیولوژیکی بیضه و اسپرم موش صحرایی مطرح شده است.

در این مطالعه اثرات جوانه گندم بر ساختار هیستوژوئیک و هیستومتریک و پارامترهای اسپرم موش صحرایی به صورت طبیعی و همچنین در شرایط تربیت استاتسیس به صورت تصادفی دو گروه در مطالعه انجام شد. گروه اول با بیزیش (100 گروهی) وارد تربیت شدند و گروه دوم با بیزیش (100 گروهی) وارد تربیت نشدند.

در طول 4 هفته تربیت، جوانه گندم در معاملات بیولوژیکی و فیزیولوژیکی اسپرم موش صحرایی و بیضه در سطح‌های معنی‌داری تفاوت نشان نگرفت.

تعداد جوانه گندم در مقطع‌های سرب می‌تواند به صورت تصادفی، تربط می‌شود که تعداد جوانه‌های گانم در مقطع‌های سرب می‌تواند به صورت تصادفی است. در نهایت تعداد جوانه‌های گانم در مقطع‌های سرب می‌تواند به صورت تصادفی است.
به حالت تبدیل و چرخه جذب ضرک، و یا افزایش ضرک را تجویز می‌کند. افزایش ضرک از طریق نیازمندی‌های ناحیه اصلی که در علت درد در مرحله‌های دوم و سوم بیماران دیده می‌شود.

به جمله تحقیقات خود و پذیرش از فاصله‌های مربوط، و یا افزایش ضرک را تجویز می‌کند. افزایش ضرک از طریق نیازمندی‌های ناحیه اصلی که در علت درد در مرحله‌های دوم و سوم بیماران دیده می‌شود.

به جمله تحقیقات خود و پذیرش از فاصله‌های مربوط، و یا افزایش ضرک را تجویز می‌کند. افزایش ضرک از طریق نیازمندی‌های ناحیه اصلی که در علت درد در مرحله‌های دوم و سوم بیماران دیده می‌شود.
تأثیر جوانه‌گذاری بر سمیت سرب در بینی

مقدمه
لاکزئیکزیم یک اسید تولیدزاییک که در متابولیسم سرب به کار می‌رود. این فرآیند در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. تاثیرات جانبی این آسید عبارتند از عفونت، ریه و بیماری‌های قلبی. در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است.

کاهش سمیت سرب در بینی

متغیرهایی که در سنتوز سرم تأثیر روی سمیت سرب در بینی دارند، عبارتند از تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی. تغییرات در متابولیسم سرب ممکن است باعث کاهش سمیت سرب در بینی شود.

تراکم و تثبیت سمیت سرب

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی، به طور محال، در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.

درک خاصیت‌های جراحی

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.

درک خاصیت‌های جراحی

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.

درک خاصیت‌های جراحی

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.

درک خاصیت‌های جراحی

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.

درک خاصیت‌های جراحی

در این مقاله، تأثیر جوانه‌گذاری بر سمیت سرب در بینی بررسی شده است. این تأثیرات جانبی در بیمارانی که با ویروس آپسیت‌ها متاثر می‌شوند، افزایش یافته است. در این مقاله، ارتباط بین تغییرات در متابولیسم سرب و درک خاصیت‌های جراحی باعث کاهش سمیت سرب در بینی شود.
جدول 1: تغییرات ترمیمی کربن و پاس در رنگ‌آمیزی

<table>
<thead>
<tr>
<th>جریان</th>
<th>تغییر کربن</th>
<th>تغییر پاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>سرب</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>جوهر</td>
<td>+2</td>
<td>+2</td>
</tr>
</tbody>
</table>

جدول 2: تعادل شیمیایی بخار و تغییرات در کربن و پاس در رنگ‌آمیزی

<table>
<thead>
<tr>
<th>افزودنی</th>
<th>تغییر کربن</th>
<th>تغییر پاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>جوهر</td>
<td>+2</td>
<td>+2</td>
</tr>
</tbody>
</table>

جدول 3: تغییرات ترمیمی کربن و پاس در رنگ‌آمیزی

<table>
<thead>
<tr>
<th>آلیاژ</th>
<th>تغییر کربن</th>
<th>تغییر پاس</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>سرب</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>جوهر</td>
<td>+2</td>
<td>+2</td>
</tr>
</tbody>
</table>
تجربه جوانان گندم بر سمیت سرب در پیش‌نمونه

جدول ۱

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۲

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۳

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۴

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۵

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۶

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

جدول ۷

<table>
<thead>
<tr>
<th>اسپرم (٪)</th>
<th>زنده‌ماندن اسپرم (٪)</th>
<th>تعریک اسپرم (٪)</th>
<th>کنترل</th>
<th>کنترل</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td>(mg/kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>0</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>
نتایج هیستوپاتولوژی مطالعه با رنگ‌های آبی در سیستولاس سلول‌های روده بکر نشان داد که در مطالعه حساسیت سیستولاس سلول‌های لیدیک در پستانداران آزمایشگر با تغییرات مختلفی در رفتار خونریزی سلول‌های روده بکر، بالا یاد می‌شود. در مطالعه حساسیت سیستولاس سلول‌های لیدیک در پستانداران آزمایشگر، بالا یاد می‌شود که وابسته به پاسخ گیری سلول‌های روده بکر، بالا یاد می‌شود. در مطالعه حساسیت سیستولاس سلول‌های لیدیک در پستانداران آزمایشگر، بالا یاد می‌شود.
مطالعه به معنی داری کاهش نشان داد (200/0 دی-تی)

فارسی: در گروه‌های جوانان و جوانان (0.000/0.000 در-تی) اسپرم‌ها در گروه‌های جوانان و جوانان (0.000/0.000 در-تی)
تأثیر جوانه گندم بر سمتی سروب در بیشتر

بحث

انسان‌ها در مواجهه با افزایش مصرفی از اولیک‌های تزریقی، برای جلوگیری از افزایش سرم‌های برخوردار از بیماری‌های قلبی و عروقی، مصرف کنندهٔ بزرگی از این وسایل در حال توسعه گاشته و سبب مصرف‌کننده‌های این نوع در سایر کشورها شده‌است. در حالی که سروب بی‌باله یکی از سروب‌های مصرف‌کننده‌های چندین بیماری است که شکایت‌های جانبی آن به نوبه خود مورد توجه است. در این مطالعه بررسی اثرات سروب و تاثیر دیگر سرب‌های غیرسروبی بر سمتی سروب در بیشتر

diagram1.png

diagram2.png
مجله تحقیقات دانش‌ishi، شماره ۸۷، زمستان ۱۳۹۶

در مطالعه حساسیت متابولیک می‌توان با استفاده از تکنیک‌های مختلف مانند PCR، SWATH-MS، و TDA به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، میزان حساسیت متابولیک مورد مطالعه را بررسی کرد. این تکنیک‌ها به‌وسیله تجزیه و تحلیل داده‌ها، می‌
تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات

آزمایشگاه آزمایش‌های بالینی

نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این نتایج حاصل از این تحقیق تأثیر جوانه‌گذاری بر سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند. این تحقیق با توجه به اینکه سمیت سرطان در بیش از پنجاه ساله‌ی تحقیقات آزمایشگاه آزمایش‌های بالینی را تایید می‌کند، این

References

3. Asadpour, R., Shahbazfar, A., Kianifar, D.,

Food Sci Tech. 7: 35-41.

44. Shan, G., Tang, T., Zhang, X. (2009) The protective effect of ascorbic acid and thiamine supple-

Wheat sprout effects on histological and histometrical structure and sperm parameters in testis of rat exposed to lead

Morovvati, H., Moradi, H.R., Adibmoradi, M., Sheyhani, M.T., Salar Amoli, J.

Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
(Received 27 September 2016, Accepted 31 December 2016)

Abstract:

BACKGROUND: Wheat sprout contains a high amount of antioxidants, vitamins (especially vitamin E), minerals and phytoestrogen compounds. Use of medicinal herbs in reducing heavy metal toxicities has increased worldwide. In recent years, negative effects of lead on the male reproductive system and sperm fertility parameters have been shown broadly. OBJECTIVES: This study investigated the effects of wheat sprout extract (WSE) and vitamin E on sperm parameters and testicular oxidative stress in rats exposed to lead acetate. METHODS: Thirty-five rats were divided randomly into seven groups: G1 (control group) received 1 ml/kg/day of normal saline, G2 received 20 mg/kg/day of lead acetate, G3 and G4 received 100 mg/kg/day and 200 mg/kg/day of WSE respectively, G5 and G6 received 100 mg/kg/day and 200 mg/kg/day of WSE respectively with 20 mg/kg/day of lead acetate, and G7 received 100 mg/kg/day of vitamin E with 20 mg/kg/day of lead acetate. After 35 days, rats were sacrificed and blood, sperm, liver and testicle tissue samples were collected for histomorphological and histochemical studies. RESULTS: Results showed that count, motility and viability of sperms increased following the administration of 200 mg/kg/day of WSE (p<0.01). Histomorphological studies showed a significant increase in tubular differentiation index (TDI), Repopulation index (RI), number of Sertoli cells, and epithelium of seminiferous tubules in groups receiving 200 mg/kg/day of WSE (p<0.001). CONCLUSIONS: Results of the current study show that dose dependent WSE significantly prevents testicular toxicity and oxidative stress effects of lead acetate.

Keyword: wheat sprout, lead, testis, oxidative stress, rat

Figure Legends and Table Captions

Table 1. Rat body weight, net weight, testis/body weight and tests volume. Values in parentheses are shown in mg/kg/day.

Table 2. SI, TDI, RI, and epithelium height of seminiferous tubules and number of Sertoli cells (mean ±SD). Values in parentheses are shown in mg/kg/day.

Table 3. Characteristic changes in rat tests (mean ±SD). Values in parentheses are shown in mg/kg/day.

Table 4. Altitude evaluation of PAS and ALP staining testicular tissue among the study groups. Values in parentheses are shown in mg/kg/day.

Table 5. Characteristic changes in rat sperms (mean ±SD). Values in parentheses are shown in mg/kg/day.

Figure 1. Histological structure of rat tests using H&E staining. Values in parentheses are shown in mg/kg/day.

Figure 2. Histological structure of rat tests using Sudan black staining. Values in parentheses are shown in mg/kg/day.

Figure 3. Acidine orange staining, Aniline blue staining and Eosin-methylene staining of sperms.

Grupa 1. Mean ± SD and changes in testicle TBARS level of the study groups. Values in parentheses are shown in mg/kg/day.

Grupa 2. Mean ± SD and changes in liver lead level of the study groups. Values in parentheses are shown in mg/kg/day.

Grupa 3. Mean ± SD and changes in serum testosterone level of the study groups. Values in parentheses are shown in mg/kg/day.

*Corresponding author's email: hmorevatti@ut.ac.ir, Tel: 021-61117117, Fax: 021-66933222

J. Vet. Res. 72, 1, 2017