مقایسه بورترژای بودرهاي پرسنل دانشگاهي و دانشگاهي مصونوي با پرتوزایي زمينهای

(DDS) - دکتر فرشاد باجکلي
(DDS) - دکتر روشان غفاری

نویسنده: اصفهان، دانشگاه، دانشگاه ازبک اورگانوز، بهشت رادیولوژی
Roshanakghaffari@yahoo.com

پست کلینیک:

Chelsea

چکیده

مقیده: بیماری از حصولات و سابقه صمیمی و محرومی در اکسپوز بیماری در پرتوزای، اخاکی از درمان مولار همکاری می‌کند. استفاده از تکنیک‌های پورتوزایی از دیروز در دانشگاه مصونوی و بودرها پرسنل برای ایجاد خاصیت فلورسانس پورتوزایی به‌دست آورده توده. از آنجایی که بیماری از افراد درک‌های خاصیت دانشگاه پرسنلی و یا دارای دار، این سلسله اکتشی از ناحیه می‌تواند به مدت گذشته این موارد به کمک و نوشتارهای آن آگاهی کمیم.

هدف: این مقاله پرتوزایی نسب تعداد در دانشگاه مصونوی پورتوزایی در پنج چهارم.

مواد و روش‌ها: در این مطالعه، آزمایشگاهی در شرکت مسکن بوده، پورتوزایی واگرد از شرکت مسکن پورتوزایی در دانشگاه مصونوی و دانشگاه پرسنلی دانشگاه پرسنلی دانشگاه. بودرها پرسنل واگرد از شرکت مسکن پورتوزایی در دانشگاه مصونوی و دانشگاه پرسنلی دانشگاه. تا پرتوزایی واگرد از شرکت مسکن پورتوزایی در دانشگاه مصونوی و دانشگاه پرسنلی دانشگاه. در نهایت، دانشگاه پرسنلی دانشگاه. دانشگاه مصونوی واگردی از دیروز در دانشگاه مصونوی واگردی از دیروز در دانشگاه مصونوی واگردی از دیروز.

نتایج: پرتوزایی پرسنل مصونوی دانشگاه مصونوی دانشگاه. پرتوزایی واگرد از شرکت مسکن پورتوزایی در دانشگاه مصونوی و دانشگاه پرسنلی دانشگاه. به طور میانگین دانشگاه پرسنلی دانشگاه. دانشگاه مصونوی واگردی از دیروز در دانشگاه مصونوی واگردی از دیروز در دانشگاه مصونوی واگردی از دیروز در دانشگاه مصونوی واگردی از دیروز.

نتیجه‌گیری: این مطالعه به تایید پرتوزایی واگرد از شرکت مسکن پورتوزایی نموهای مثبت به اشته زمینه‌ها کم‌توجه. این مطالعه به تایید پرتوزایی واگرد از شرکت مسکن پورتوزایی نموهای مثبت به اشته زمینه‌ها کم‌توجه. این مطالعه به تایید پرتوزایی واگرد از شرکت مسکن پورتوزایی نموهای مثبت به اشته زمینه‌ها کم‌توجه.

کلید واژه‌ها: پرسنل دانشگاه مصونوی، پورتوزایی، کمترین، دانشگاه مصونوی، پرسنل

مجله دانشگاه علوم پزشکی گیلان، دوره هفتم شماره ۲۶، صفحات ۵۰-۵۹

مقدمه

گردنه‌های تلوزیونی (کمتر از ۱۰ میکروسورت) و...

حساسیت(۱). از سال ۱۹۹۵ تکنیک‌های پورتوزا شکل‌دهی اوراریوم و سرور در دانشگاه مصونوی و پورتوزا های پدرسیم استفاده شد. تا دانشگاهی مصونوی خاصیت فلورسانس ش به دانشگاهی مصونوی خاصیت فلورسانس ش به

در گذشته اکسید اوراریوم برای ایجاد فلورسانس به کار می‌رفت. این نتایج آستین (میانگین اکسید اوراریوم به دلیل بنزکم پرتوزایی، برای انبوه جهات نظیره و اکسیدهای فلور، بیناپت و بینرکومپی برای ایجاد نسبت یا، در هر یک فرد واکنش شده (۴).)

پورتوزایی سرامیک دانشگاه مصونوی استفاده، اغلب توسط آلمان.
در تمام موارد (به‌جز در مورد به‌تایمی به پاسیم ۴۰ که احتمالاً ناشی از آلودگی محیط آزمایشگاه بوده‌است) شمارش‌ها پیش روي پودرهای قدمبی، انجام گرفته و از آنها که

بی‌پایان افراد دارای روش‌های پزشکی یا دنیا مسئولین این مسئله است. نسبت پودرهای مورد استفاده را بررسی کرده و

تکنیک‌های لایاپنترا در مقدار پودریزی (در مقایسه با

پودرهای زمینه) مواد آگاه کننده این مطالعه با هدف تعیین

مقدار پودرهای نسبت تعدادی از دندان‌های مصنوعی

مورد استفاده در دندها و پودرهای پروسناکانی که در

لایاپنترا داشته‌بودند بخش‌هایی از مورد استفاده

قرار می‌گیرد. انجام شد.

مواد و روش‌ها

پس از کسب موافق حوزه سازمان انرژی اتمی برای مقایسه

پودرهای نمونه‌ها با اشعه زمینه به قسمت

M.N.S.R - میکروهستروف‌مولکول (Microscopic Neutron Source Reactor) (Mi

راجع‌الیه گزارش‌های پودرهای نمونه‌ها به‌جور می‌باشد.

آنجا که امکان امکان‌هایی به در نظر گرفته شده‌اند از

پودرهای به‌طور مشترک کار سیستم نیز به ویژه و

نیازمندی‌های آن به‌طور کامل و به‌طور کامل شناسایی نبوده.

است. این گزارش‌ها در این مطالعه بحران‌هایی مطرح

می‌باشد. که برای شرح زیر است: در این مطالعه تجربی‌

آزمایشگاهی، پودرهای پروسناکانی که سری‌کوب و

دانانهای مصنوعی ققالی و خلفی، پودرهای پژوهشی یا

دانانهای شام‌بیابی و مردان (ساخت ایران) که در

در سال ۱۹۷۵ یکی از محققین وزارت بهداشت آمریکا

به نام تامسون از بخش اموزش و کیفیت زندگی اعلام

کرد که تعداد بسیاری از پرسنل‌های دندانی به کار رفته

در آمریکا پیش از ۱۵۰ درصد یا ۲۰۰ ppm از اورانیوم

داشتن که پودرهای آن پیش از حد مجاز است (۴).

گرچه‌های آب آهن و خود روش دندان‌های مصنوعی در

مقابل توده‌های آن‌ها نشان دهنده، و بزرگ‌تر از سایر است که

مختصات پیدا کردن از پودرهای پیش‌تر از فلورسنت کردن

دانانهای استفاده کننده. یکی از راه‌های استفاده از عناصر

نادر خاک است که بسیار گران‌ترند (۴).

ناتال میزان ذرات با خروجی از پودرهای پرسنل ویا با

اندازه‌گیری کرده و مشاهده نمود که میزان پودرهای آن

برای پرسنل که از روش‌های پرسنل زاک است استفاده

می‌کند خطری نداشته اما برای تکنیکی که در حین کار

عادت به مکیدن بررسی که آن کار انجام می‌دهد دارد

خطر زا است (۲).

مک کلاک در سال ۱۹۷۴، میزان پودرهای پرسنل

پرسنل دندانی و دندان‌های مصنوعی به‌کار رفته در

دهره‌ها را با پودرهای نمونه مقایسه کرده، که در این تحقیق

به‌پایه رصد و پیش‌بینی برای تکنیک‌های

لایاپنترا که با پیام‌های پرسنل‌های کار می‌کند به بیمارانی

که از دندان‌های مصنوعی با کارگاه‌های پرسنل استفاده

می‌کنند وجود دارد (۲).۲.

رحمتی، سال ۱۹۹۸ در سازمان انرژی اتمی با استفاده از

آزمایش‌های زمانی در خلاصه‌ها یا اکسپرسیون نمونه‌های

پروسناکانی را بررسی کرد و برای مثال نتیجه نشان داد که

پودرهای نمونه‌ها پایین و در حد پودرهای زمینه است.
مقایسه پرتوتزایی پودرهای پرسلان دندانی و دندانهای مصنوعی با پرتوتزایی زمینهای

لایه‌ترادسانش‌کننده‌های آزاد خوراسان استفاده می‌شود و جهت افزایش مصرف دندان‌پزشکی از طریق تبلیغات و تبلیغاتی بر روی وب‌سایت به نمایندگان دندانپزشکی مورد استفاده قرار می‌گیرد. پس از آن تغییرات شناسایی می‌شود که میزان پرتو‌پذیری پزشکهای زمینه در هر ساعت در طول یک روز تقسیم به دو نسبت است. همچنین ممکن است میانگین شماره‌های یک روز بعد از پرتو‌پذیری پزشکهای زمینه

بعد تفاوت معناداری داشته باشد.

سپس سیستم آنیکرسیز سوسزین حفره‌دار پاورسیم (Scintillator NaI (TI)) که نقش حس‌پذیری در تولید نور از سوسزین دارد (شکل 2) که در برگیرنده بازده بالا برای پرتوهای همه‌است و به‌طور کلی استفاده برای چIMPه‌ها است که پرتو‌پذیری کمی دارد. مانند شکل 3 شیشه شد و به وب‌سایت چIMPه‌ها و سازمان‌ها (M.C.A) طراحی خورشید بررسی و آزمایش گرایش کلیک (M.C.A) در این قسمت پاتریشیا، که به گونه‌ای نظارت شوند که طیف قطعه‌های به صورت واضح توسط آنالیز تونال می‌شود، نمایش‌نا و انالیز کننده برای حذف نیز‌ها، پرتوهایی و جهت نظارت روی آنها بازدارند هر کدام دستگاه استفاده می‌شود. بعد از این که سیستم با دقت تهیه شده، اشکارساز داخل حفاظت سری برق قرار گرفته تا نشان‌دهنده به حذف کامل کاهش باید. در این مرحله برای انتخاب گزینه‌های مبتنی بر قانون بررسی‌ها به‌طور نسبی است. یک بعد سیگنال خالی ممکن است که شما به دست آورده از این آشکارساز قرار داده شد و بی مدت یک ماه متوالی روزانه هفتم بار (هر ساعت یک بار) میزان اشعه زمینه محاسبه و
دکتر روشنک غفاری - دکتر فرشاد باجاغلی - مهندس مهندس مهندس رضوی فرد - دکتر مريم دانیایی

جوان اندام‌های گیری میزان پرتویایی نمونه‌ها در ایندی‌های هلوار روز به مدت یک ساعت، ناشاب زمینه اندام‌های گیری و ثبت شد و سپس کیسول نمونه وسط حفره آشکار زمان گرفت و میزان شمارش آن به ازای هر یک ساعت اندام‌های گیری و ثبت گردید و مجدداً تابش زمینه با کپسول خالی به مدت یک ساعت اندام‌های گیری شد. در واقع به ازای هر دو یا سه دقیقه که میزان پرتویایی نمونه‌ها اندام‌های گیری شد برای اطمینان از ثابت‌بودن پرتوایی زمینه در هنر اندام‌های گیری، ناشاب زمینه‌ای نیز ثبت شد. برای این که تغییرات ناشاب زمینه‌های داخلی، اندام‌های گیری میزان پرتوایی هر نمونه در دو روز متولی انجام شد و در صورتی که در فاصله زمان اندام‌های گیری یک نمونه تغییرات زیادی در ناشاب زمینه مشاهده می‌گردد کار متوقف و مجدداً در شرایط مناسبی تکرار می‌شود. اشعه شمارنده پرتویایی نمونه‌ها را همراه با اشعه زمینه مشاهده می‌کند.
مقایسه پرتوزایی پودرهای پرسن دندانی و دندانهای مصنوعی با پرتوزایی زمینهای

آندزگی‌های گیر می‌کند. بنابراین برای محاصره پرتوزایی نمونه بر اساس هر گرم از فرمول زیر استفاده شد. بر این اساس میانگین پرتوزایی نمونه‌های پودرهای پرسن دندانی با میانگین پرتوزایی زمینه مقایسه شد.

(شمارش زیمینه - شمارش نمونه) = شمارش هر گرم نمونه

جدول 1: مقایسه میانگین شمارش‌ها (شمارش‌ها نسبت سنتیمی با پرتوزایی دارد) هر مقدار فرمول شیتر باند میزان پرتوزایی نیز بایدهای بروز به پرتوزایی هر گرم پودرهای پرسن دندانی و

<table>
<thead>
<tr>
<th>نمونه (تعداد شامل)</th>
<th>زمینه (تعداد شامل)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gr.hr</td>
</tr>
<tr>
<td>مواد</td>
<td>hr</td>
</tr>
<tr>
<td>سرامکو III دنتین</td>
<td>311.7 × 287.1</td>
</tr>
<tr>
<td>سرامکو ایک</td>
<td>315.8 × 297.1</td>
</tr>
<tr>
<td>تورینتکه دنتین R</td>
<td>371.5 × 308.2</td>
</tr>
<tr>
<td>سرامکو III ایک</td>
<td>477.5 × 409.7</td>
</tr>
<tr>
<td>تورینتکه دنتین A</td>
<td>421.5 × 365.7</td>
</tr>
<tr>
<td>سرامکو III ایک</td>
<td>325.8 × 360.3</td>
</tr>
<tr>
<td>نمونه</td>
<td>438.7 × 402.7</td>
</tr>
<tr>
<td>شانگهای</td>
<td>11.3 × 2.7</td>
</tr>
<tr>
<td>مرجان</td>
<td>10.3 × 2.7</td>
</tr>
</tbody>
</table>

در هر دیده‌گرفش غیر مشابه(0.5) فاوت معمدی دار بین میانگین‌ها در مقدار 0.35 نشان دادند.

جدول 2: درصد میانگین شمارش‌ها مربوط به پرتوزایی نمونه‌ها بر اساس هر گرم نسبت به تابیت زمینه

<table>
<thead>
<tr>
<th>نمونه (تعداد شامل)</th>
<th>درصد پرتوزایی نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>مواد</td>
<td>براساس هر گرم نسبت به تابیت زمینه</td>
</tr>
<tr>
<td>سرامکو III دنتین</td>
<td>2/864</td>
</tr>
<tr>
<td>سرامکو ایک</td>
<td>2/864</td>
</tr>
<tr>
<td>تورینتکه دنتین R</td>
<td>0/100</td>
</tr>
<tr>
<td>سرامکو III ایک</td>
<td>0/100</td>
</tr>
<tr>
<td>نمونه</td>
<td>0/100</td>
</tr>
<tr>
<td>شانگهای</td>
<td>0/100</td>
</tr>
<tr>
<td>مرجان</td>
<td>0/100</td>
</tr>
</tbody>
</table>

brای محاسبه درصد پرتوزایی نمونه براساس هر گرم نسبت به تابیت زمینه از فرمول زیر استفاده شد:

(برای محاسبه درصد پرتوزایی نمونه براساس هر گرم نسبت به تابیت زمینه)
دکتر رونگکیف غفاری- دکتر فرشاد باجمعلی- مهندس مهدی رضوی‌فر - دکتر مربع دانیاری

درصد پرتوژایی نمونه براساس

\[
\text{نماینگین پرتوژایی زیمنه} \times \frac{\text{وزن نمونه}}{100}
\]

دارای نماینگین شماره‌های مربوط به پرتوژایی زیمنه، نماینگین شماره‌های مربوط به پرتوژایی نمونه‌ی این گروه نسبت به ناپایین زیمنه

از لحاظ پرتوژایی نمونه براساس هر گرم نسبت به ناپایین زیمنه بیشترین درصد مربوط به سرامکو II ایک و کمترین درصد مربوط به مرجان بود.

در این مطالعه تقریباً ۵۰ سما مسئولی روانه‌های هفت بار (هم‌ساعت یک بار) میزان اشعة زیمنه محسوب شد و میزان‌های مارکه مربوط به اشعة زیمنه در طول هر روز ثبت شد و تغییرات آن زمان‌های طی پس‌ساز حساسیت انجام شد. نتایج میانگین ناپایین زیمنه در طی سه ماه ۴۸/۷۲۸۹/۲۴ و حداکثر آن ۴۲/۳۳/۲۴ بود. بنابراین با توجه به عملیات زیبر تغییرات اشعة زیمنه طی یک ماه تا ۴٪ متغیر بود.

قانون حداکثر و حداقل

درصد تغییرات اشعة زیمنه در طی سه ماه ۴/۰۳ = ۲۶۴/۲۳

بنابراین میزان تغییرات اشعة زیمنه بیشتر از پورده‌ای

پرسن بوه است.

بحث و نتایج

در مطالعه ما که برای مقایسه پرتوژایی دو نمونه از دندان‌های مصنوعی به‌کار رفته در دندان‌های و شش نمونه پورده‌ای مورد استفاده در لازوال یا پرتز دانشکده دندانپزشکی خوراکساز بوده، به ارزیابی آن که ایا پرتوژایی این مواد در حداکثر در درفا است که باید تاکنین لازوال یا پرتز باشد را پرداخته شد.

پاتدندل‌های آماری نشان داد که پرتوژایی پورده‌ای پرسن

مجله دانشگاه علم پزشکی گیلان/ دوره هفدهم/ شماره ۶۶/ تابستان ۱۳۸۷

www.SID.ir
مقایسه پروتوزایی پرسران دندانی و دندانهای مصنوعی با پروتوزای زمینهای

به کار می‌روید است و این نتیجه با تغییر نوگریزی‌های مغزی
دارد. همچنین در این تحقیق درصد پروتوزایی هرم مرا و
نمونه‌ها نسبت به تایپ زمینهای (مشابه تحقیق‌های مک کلاک) محسوب آن‌ها نمی‌کند.

مک کلاک میزان پروتوزایی سده دندان‌های مصنوعی
با پیش‌بینی، دندان‌های مصنوعی پرسران و پرسران
پرسرانی را با پروتوزای زمینه مورد مقایسه قرار داد.

وی نتیجه گرفت که پرسرانی کراون و بریت فعال‌ترین
گروه مورد آزمایش بوده‌است (مطالعه ما) و متوسط
تایپ آن‌ها (۷۵ درصد تایپ زمینهای است). اما در
مطالعه حاضر میانگین درصد پروتوزایی پورسران
نسبت به تایپ زمینهای (۹۸/70/4) بوده که در مقایسه با
۲۰/۳۰ در مطالعه مک کلاک بسیار کمتر است. شاید علت
باید به پروتوزایی مقداری پورسران استفاده از
پورسرانی کدی (در مقایسه با پورسرانی جدیدتر در
مطالعه ما) و استفاده از دستگاه‌ها پرسرانی کاپگر مولر
توسط مک کلاک بوده که دارای دقت پایین‌تری است به
همین دلیل برای شمارش پروتوزایی هر نمونه ۴۲ ساعت
زمان صرف کرده در حالی که در تحقیق ما با استفاده از
آشکارسازسی سوزونز که دارای دقت بالاتری است، زمان
لازم برای اندازه‌گیری پروتوزایی هر نمونه به یک ساعت
کاهش یافته است.

در مطالعه مک کلاک دندان‌های مصنوعی پرسران نیز
۱۷/۴ درصد نسبت به تایپ زمینهای از خود اشک ای، در
مک کلاک در صورتی که پروتوزایی دندان‌های مصنوعی با
پیش‌بیندی پی‌sim کمتر از اشک زمینهای (۹۹/۴۹) محاسبه
شد (۲).

نتایج تحقیقات حاضر روی نمونه‌های مردان و شانگ‌های
پرندی با پیش‌بیندی مک کلاک است. شاید پروتوزایی
کمتر دندان‌های مصنوعی با پیش‌بیندی مردان دلیل
باشد.

مجله دانشگاه علم پزشکی گیلان/ دوره هفدهم/ شماره ۶۶/ ۱۳۸۷ نابیستان ۵۶
دکتر روشانک غفاری - دکتر فرشاد پاچغی - مهندس مهندی رضوئی فرد - دکتر مريم دانیاري

چندانی ندارد زیرا وارد شدن این پودرها در کراواتها و ایده‌پردازی به‌روز ریتم‌های نرم، خود به‌عنوان جاذب اشعه عمل می‌کند و خصوصاً زمانتای که اشعه گیس شده بیشتر از نوع یک باید که دارای برد کوتاهی است.

یک‌باری از مدت جدی مخاطر دهان کاهش می‌یابد (2). در مطالعه سایرینژی (Sairenij) مقدار پروتزای مواد پروتز در پودرها بخشهای شدید پرسن در مقایسه با نمونه‌های خام پسیار کمتر پیداست. اما با وجود این که مقایسه اندوزگیری شده کمتر از مقدار مجاز توصیه شده است،

نتایج مختلف نشان داده که بیماران با پروتز نسبت به افراد دیگر جمعیت سطح بالاتری از دور جدی رشن شان می‌دهند (8).

کاربرد تخصصی یا درمانی این مواد در پزشکی و
داناتزپزشکی، به عنوان دوز محدود آنها اشکالی ندارد ولی تحت هر شرایطی انتخاب بین مزان خطرات احتمالی و
مقدار استفاده از آنها به نظر پزشک بستگی دارد. ما
نمونه‌ای اعدام کنیم که به کارگیری مواد فلورسنت پروتز
در پرسن به جهات درمانی یا تخصصی است؛ پس دوز
محدود و مناسب از این مواد مقداری است که در
مقررات نظام پزشکی برای هر اندام یک فرد از افراد
جامعه توصیه شده است یا به عبارتی به طور متوسط

منابع

6. Veronese I, Guzzi G, Gissani A, Cantone MC, Ripamonti D. Determination of Dose Rates from
Comparison between Radioactivity of Porcelain Powders and Artificial Teeth with Background Radiation

*Corresponding Author: Maxillofacial Radiology Dental Department Khoorasan Azad University, Isfahan, IRAN
E-mail: Roshanakghaffari@yahoo.com
Received: 14/ Sep/ 2007 Accepted: 11/Feb/2008

Abstract

Introduction: A lot of industrial products and consumer resources have important role in human exposure and receiving yearly radiation dose limit.
Radioactive products have been used in denture teeth and Porcelain powders for flourescence properties for long time in dentistry. Because of the most of the people used Porcelain powder and denture, this became an emotion to survey the rate of relative reactivity of powders and inform the laboratory personals.

Objective: Determine the relative radioactivity of artificial teeth used in dentures and in porcelain powders.

Materials and Methods: In this laboratory-experimental study six samples of porcelain powders (ceramcolIII opaque,ceramcolIII dentin,ceramcolII opaque,ceramcolII dentin, noritake dentin EX3 and noritake incisal) and two samples of anterior and posterior artificial teeth with polymer base (marjan and shanghy) were used and about 3gr of each sample was placed in front of the scintillator detector Nal(tl) window.
The number of emission in one hour was measured during each stage. Background radiation was measured in several stages. Samples and background radiations ratio were measured by means of paired t test. Data were analyzed by SPSS soft ware.

Results: Radioactive properties of different porcelain powders and mentioned denture teeth were significantly lower than background radiation.
CeramcolIII opaque porcelain powder showed the most radioactive properties and marjan denture teeth showed the least.

Conclusion: This study confirmed previous studies about low rate of radioactive properties of samples relative to back ground radiation and indicated if safety precautionse are observed no problem should rise for dental technicians.

Key words: Dental Porcelain/ Radioactivity/ Tooth Artificial

Journal of Guilan University of Medical Sciences, No: 66, Pages 50-59

1. Maxillofacial Radiology Dental Department, Khoorasan Azad University, Isfahan, IRAN
2. Prostodonties Dental Department, Esfahan University of Medical Sciences, Isfahan, IRAN
3. MNSR Department, Isfahan Nuclear Technology, Isfahan, IRAN
4. Dentistry Clinical, Mah Shahr, IRAN