An Investigation into the Effect of Warm Compaction on the Characteristics of PM Parts

V. Dehnavi K. Janghorban A. Haerian

Abstract Several methods for achieving higher density in ferrous PM parts are possible. Double press/double sinter allows densities in excess of 7.3 g/cm³ but is limited by cost and geometry considerations. Warm compaction is a new technology resulting in increased density in a single step. By this process it is possible to obtain density levels and mechanical properties comparable to double pressing and sintering. Some characteristic properties of Astaloy CrM, a prealloyed water atomized powder, was investigated and compared with those of conventional compaction. The effect of die temperature on the mechanical properties of parts was also studied. The results clearly show the advantages of using warm compaction process over conventional methods. It was found that the best results are achieved when the die temperature is set to 150°C.

Key Words Warm compaction, Mechanical properties, Die temperature, Astaloy CrM.

Astaloy CrM
مقدمه

عده‌ای اخیر توسیعی پودرهای آهن و فولاد جدید باعث کستش قابل ملاحظه‌ای کاربرد قطعات مالوروزی پودر شده است. لزوم روزافزون تولید موادی با کارایی بالا باعث شده است تا نیاز به فراپاککه‌ای که ایجاد کننده خواص مکانیکی بهینه به همراه کنترل ابعاد دقیق باشد، احساس شود.

از اینجا که کچالی به طور کلی خواص مکانیکی و مخصوصاً خواص دینامیکی را تحت تأثیر فشار می‌دهد، قطعات مالوروزی پودرآهی که چگالی بیش از 0.713 g/cm³ مورد نیاز است، روش‌هایی مانند پرسكاری و نفک‌جوشی در مرحله ای (DPDS) و در همین‌کنار موادی به روش‌های متداول پرسكاری و نفک‌جوشی که مرحله ای استحکام بیشتری ایجاد می‌کند، اما در خلیج از مواد استفاده از این روش‌ها به خاطر ملاحظات ابعاد و هزینه محدود می‌شود. در توجه به لزوم کستش بیشتر استفاده از قطعات مالوروزی پودر باید مواد و فراپاککه‌ای اقتصادی مناسبی برای بهبود چگالی و کارآمدی قطعات به وجود آورد.

در اواست هدایت اعیان 1980 علی‌علوم شهید به حرارت دادن مخلوط پودرهای آهنی در محدوده‌ی ترکیب Höganas می‌باشد بردار. کارهای تجاری در شرکت Höganas می‌باشد بردار. کارهای تجاری در شرکت AB ناشن داده که وقتی پودر آهن تا 150 oC حرارت شوند برای اطمینان از جریان مناسب پودر و رفتار پرکننده‌ای که لازم است کنترل دما به بهترین صورت بیافزایی در تجهیز پیچش‌کننده می‌شود که دما پودر و قالب با دقت کنترل شود [6].

در حال حاضر 200 قطعه با وزن بین 200 تا 2000 گرم به این روش تولید می‌شود [3].

احکامی کننده قطعات حاضر از فشرده کردن در حدود 10 گرم دهم به این پروژه با همان فشار فشرده شده اند که 2000 گرم به این روش تولید می‌شود [3].

استحکام شکست قطعات حاصل از فشردن گرم در حدود 10 گرم دهم به این قطعات است که توسط روش های متداول با همان فشار فشرده شده اند.
نسبت به روانسازی‌های متداول با موافقت عمل کنند.

[1] همچنین فشردن گرم به‌عث افزایش چگالی خام و فضای قطعات منازلی‌برد به میزان 20/10 vagy (g/cm³) شور. این
افزایش چگالی باعث بهبود خواص مکانیکی به ویژه
استحکام خستگی می شود. [27]. در مورد بسیاری از
قطعات پیچیده استفاده از فشار بیش از 800 مگاپیکال
عملی نیست. با فشردن گرم در فشار 900 مگاپیکال
می توان به چگالی بیش از فشردن درمان اتاق با فشار

2000 مگاپیکال دست داشت [3].

تحت‌بقیه‌شان در دهه که به وسیله فشردن
گرم می توان با تخلف کمتر از 2 دست بان. آزمایش‌ها بر روی قطعات بر اساس شناور می‌دهد که
توجه نخیال در فشردن گرم به‌علت درمان اتاق

[8].

فشردن در دمای حدود 150°C میزان مواد
روانسازی‌های راکه‌ها را دارد و در عرض مقادیر
روانسازی راکه به فصل مشترک قطعات و قابل
می رسد. افزایش می دهد. توزیع معنی‌دار روانسازی به این
صورت نه تا از استحکام خرا ناافزایش می دهد، بلکه
نیروی بیرون انداختن قطعه از قابلیت را نیز کاهش

[2].

می دهد و در نتیجه عمر می‌یابد. روانسازهای آزمایش

[4] اکثر روانسازهای مورد استفاده در فشردن سری

نسبت به فشردن در دمایها بالا استفاده کرده، زیرا

به نظر می رسد که این روانسازهای فقط در یک
محدودی مشخص دمای بسته هنگامی که
دامی یک مخلوط پودری حاوی روانسازهای متداول
کنونی تا دمای فشردن گرم افزایش پایین، جریان پودر
در جریان ابعاد می شود که از نقاط نظر تولیدی امری مضر

[5] اس. در نتیجه برای بهره برد از تأثیرات غیرافزایش

دهم، روانسازهای جدیدی مورد نیاز است. در فرایند
فشردن گرم برای بهبود کارایی در دمای بالا از سیستم
روانسازی جدیدی استفاده شده است. همچنین این
روانساز طریقی طراحی شده است که در مقادیر کمتری

www.SID.ir
شده است که عنصر آلاینده ارمزاتری جایگزین عنصر Ni, Cu, Mo همچون Cr و Mn به عنوان عنصر ارزشمند باعث کاهش قیمت پودر نا حدود ۲۰ درصد شده است؛ در حالی که این قطعات خواص برای قطعات حاوی عنصر عنصر غیره کاهش خواص بهتر از آنها داده شده است. خواص مکانیکی قطعات از عادی مسئول و استفاده از روش فشردن گرم درون خواص با وجودیتی می‌خشد [10,11]. مشخصات پودر مورد استفاده در این پژوهش به صورت زیر است:

<table>
<thead>
<tr>
<th></th>
<th>Cr (%)</th>
<th>Mo (%)</th>
<th>C (%)</th>
<th>В (%)</th>
<th>روشن‌زایی (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/85</td>
<td>0/25</td>
<td>2/23</td>
<td>0/25</td>
<td>95/4</td>
</tr>
</tbody>
</table>

جنس Astaloy CrM جدول ۱ آنتان شیمیایی پودر

чинیش فیزیکی
چگالی ظاهری: ۳/۰۸ گرم بر سانتی‌متر مکعب
قلبیت سیلان (زمان جاری شدن ۵۰ کیلوگرم پودر): ۲۲ s/50gr
تخلف با استفاده از قانون اختلاف: ۷/۴۹ درجه سانتی‌گراد بر سانتی‌متر مکعب.
پودر مورد استفاده قبل از فشردن به مدت ۲۰ دقیقه تحت عملیات همگین سازی قرار گرفت.

برای گرم کردن پودر از گرم کندنده شیکاکی (Slot Heater) استفاده شد. گرم کندنده شیکاکی همچون یک مبدل که گرام عمل می‌کند که درآن از روغن به عنوان واسطه و سیالی استفاده حاره استفاده می‌شود. گرم کندنده شیکاکی شامل سیستم گرم کندنده با سیستم اصلی است: مبدل کندنده گرم، مخروط و ولیعی خروط‌می. پودر وارد مبدل‌کن حاره شده و در بین شکاف‌هایی که توسط صفحه روغن پوش گرم شده در گرم کندنده روغن حاره درون شده.
شکل ۳: چگالی خام و تبدیلی فشرده شده در فشار ۶۰۰ مگایاسکال در دماهای مختلف قابل Astaloy CrM

شکل ۴: چگالی نسبی فطلات حام فشرده شده در فشار ۶۰۰ مگایاسکال در دماهای مختلف قابل Astaloy CrM

شکل ۵: تغییر ابعادی در اثر تفکشی فشرده شده در فشار ۶۰۰ مگایاسکال در دماهای مختلف قابل Astaloy CrM
در شکل (۴) تأثیر فرابند فشردن گرم بر چگالی نسبی قطعات مشاهده می‌شود. این نمودار چگالی خام قطعات را نشان می‌دهد که چگالی توری محاسبه شده که برای ۷۹/۴ گرم در سانتی‌متر مکعب است نشان می‌دهد.

توسط روی شکل فشردن گرم در فشار ۶۰۰ مگا پاسکال می‌توان به چگالی مفاد ۹۶/۲۶ درصد چگالی توری دوخت.

شکل (۵) نمایش ابعادی می‌شود. ابعاد این سایز می‌تواند در حالت انجام شده است. میزان این تغییر ابعادی معروف میزان رشد و یا انقباض نمونه‌ها از نظر فیزیکی نموده می‌تواند در حالت فشردن کم است. به دنبال ترتیب با استفاده از مقادیر کلین شکل قطعات با دقت بالایی صورت می‌گیرد. همان‌گونه که مشاهده می‌شود تغییر ابعاد در حالت فشردن کرم نسبت به چگالی نموده می‌شود این اثبات می‌کند.

در شکل (۶) میزان پرکشتن فنری نمونه‌های خام درون قلب فشرده می‌شود. با برداشت بار اعمالی و هگمای پرکشندگی از درون قلب شده است. این نتایج نشان می‌دهد این ابعاد تغییر شکل‌های استیکس بین دو قطب در اعمال نیرو به آنها و آزاد شدن این تغییر شکل‌ها با برداشت بار اعمالی است.

<table>
<thead>
<tr>
<th>سختی (HV 30)</th>
<th>قطعه قابل (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰۹</td>
<td>RT</td>
</tr>
<tr>
<td>۲۳۸</td>
<td>۱۶۷</td>
</tr>
<tr>
<td>۲۲۴</td>
<td>۱۷۳</td>
</tr>
<tr>
<td>۲۲۸</td>
<td>۱۷۸</td>
</tr>
<tr>
<td>۲۳۷</td>
<td>۱۸۳</td>
</tr>
</tbody>
</table>

در شکل (۷) نتایج آزمایش کشش قطعات نفوذجوشی شده مشاهده می‌شود. می‌توان دید که در اثر فشردن گرم استحکام کششی درفشار یکسان در حدود ۱۰ درصد نسبت به فشردن در دمای آتاق ۱۵۰ درجه سانتی‌گراد کاهش یافته است.
همچنین مشاهده می‌شود با افزایش دما، قابلیت استحکام خام انداکی افزایش می‌یابد.

دما 183 ˚C نتایج قابلیت استحکام افزایش چگالی مواد که در شکل (3) نشان داده شده، را تصدیق می‌کند. نمونه‌های فشرده شده در قالب با دما 200 ˚C های بیشترین استحکام کششی مستند که دلیل این عملکرد خوب روان‌ساز در دماهای مورد نظر است.

Astaloy CrM

تشکل ۸ نتایج آزمایش ضریب به شنا نشان می‌دهد. در این تحقیق انرژی ضریب به استفاده از روش شارپ و به وسیله دستگاه‌ها با دقت ±1 ٪ اندازه‌گیری شد. به دلیل محدودیت و عدم دسترسی به قالب استاندارد ضریب قطعات مترالورژی پودر قابل استفاده در روی فشردن گرم، آزمایش ضریب بر روی قسمت مانی نمونه‌های کشش اندام شد و نتایج به دست آمده بر مبنای نمودنوا تفسیر شد و در نتیجه انرژی ضریب به حساب سنتیمتر مربع به دست آمد.

Astaloy CrM

تشکل ۹ نتایج مربوط به آزمایش استحکام خام قطعات (Green Strength) نشان داده شده است. آین آزمون با استفاده از تست خشک سه محوری انجام شد. می‌توان دید فشردن گرم باعث افزایش استحکام خام به میزان ۱۰۰ درصد در دماهای 183 ˚C شده است.
در این تحقیق به منظور تأثیر فرآیند فشرده‌گری گرم بر قابلیت سوراخ‌کاری قطعات در حالت خام، قطعات خام تولید شده به روش فشرده‌گری گرم و قشردن در دماهای مختلف سنجش شدند. قطعات خام تولید شده به روش فشرده‌گری گرم و قشردن در دماهای مختلف سنجش شدند. قطعات تولیدی به روش فشرده‌گری گرم به موفقیت سوراخ‌کاری شدند و مشابهت نشان دادند.

