اثر پروتوپیم بیم الکترونی بر فراسنجهای تجزیه پذیری ماده خشک، الاف نامحلول در شویندهای خشک و استیسی باگاس نیشکر

حسین رضا شهبازی، علی اصغر صادقی، حسن فضالی، علام رضا علی و محمد چمنی

تشهیه

در این تحقیق، نمونه‌های باگاس نیشکر با مقادیر مختلف (صفر، 100 و 300 کیلوگرمی) توسط یک شتاب‌دهنده الکترونی مدل LS300 تخته‌سازی و نامحلول در دو شرایط مختلف (خشک و الاف نامحلول) در شویندهای آرام شرایط و استیسی، پروتوپای شده. نمونه‌ها به تجزیه شیمیایی بطور مداوم شاده. تجزیه پذیری شکم‌های نمونه‌ی با روش کیسه‌های نلولی در حالت غیر خشک و مکونانده تجزیه مشابه در شویندهای مختلف و الاف نامحلول در شوینده‌های خشک و استیسی با توجه به تجهیزات مختلف تجزیه پذیری تجزیه پذیری مطابق با استفاده از نرم‌افزار SAS پراش گردد. تجزیه آماری داده‌های مربوط به تجزیه‌پذیری تجزیه پذیری می‌تواند با استفاده از نرم‌افزار

احجام شد. پس از تجزیه نمونه‌ها با استفاده از طرح آماری کامل تصادفی، مدل‌گذاری‌ها با آزمون نرمال و داده‌های دانکن مورد مقایسه قرار گرفتند. با استفاده از تجزیه‌پذیری الکترونی، یک بزرگ تجزیهی (3) ماده خشک و الاف نامحلول در شویندهای خشک و استیسی به صورت خشک گریز شد. در حالت که بخش کند تجزیهی (4) الاف نامحلول در شوینده‌های خشک و استیسی و ثابت نرخ تجزیه‌پذیری (5) ماده خشک ابست که سپس الاف نامحلول در شوینده‌های خشک و استیسی با استفاده از پروتوپای به طور خشک الاف نامحلول. پروتوپای الکترونی با دهه‌ی 100 و 300 کیلوگرمی تجزیه‌پذیری مورد ماده خشک و الاف نامحلول در شوینده‌های خشک و استیسی را به ترتیب به مقدار 11.11719 و 16.24777 در شرایط عبور 5 درصد در ساعت (7) الاف نامحلول.

و از تسهیلات کلیدی: پروتوپای الکترونی باگاس نیشکر، فراسنجهای تجزیه‌پذیری، ماده خشک و الاف نامحلول در شوینده‌های خشک و استیسی

1. دانشجوی سابق دکتری علوم دامی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات. تهران و در حال حاضر استادیار علوم دامی، دانشگاه آزاد اسلامی، واحد کرمانشاه.
2. استادیاران علوم دامی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران.
3. دانشیار مؤسسه تحقیقات علوم دامی کشور. کرج.
4. دانشیار سامان رزم باکر، انجمن ایران، پژوهشگاه علوم و فنون بین‌المللی، پژوهشکده کاربرد پروتوپای تهران.

hossein_shahbazi39@yahoo.com

* مسئول مقالات، پست الکترونیکی: www.SID.ir

485
مقدمه
پاکس نیشکر، یکی از پسماندانهای سافه نیشکر می‌باشد که پس از عصر ودایی از سلمان گدا گذشت. این پسماندان مهیاست فیزیکی داشت و از آن برای مصارف سوخت، کاغذسازی، مصالح ساختمانی و بهره‌کاری آن استفاده می‌شد. هم‌چنین به عنوان بستر برای تولید قارچ‌های خوراکی، تولید پروتئین نیز سلوی و نیز در تغذیه نشان‌انگیزی مورد مصرف دارد (15). در ایران، نیز، سالانه حجم انبوهی از پاکس نیشکر تولید می‌شود که عمداً به استان خوزستان اختصاص دارد. در جنوب کشورهای تولید نیشکر عرشه‌ای و کلنی‌هایی از نیشکری جیره غذاشته است. مرسوم شده، ولی به دلیل ماهیت فیزیکی نیشکر، قابلیت تجزیه‌پذیری و ضریب حمایت آن بسیار پایین است. مانند سایر مواد خشکی، در مورد بهبود ارزش تغذیه‌ای پاکس نیشکر، نیز اکثریت کارکنان انجام کردند و در نتیجه روش عمل آوری مورد بررسی قرار گرفت. این روش یکی از روش‌های افزایش تجزیه‌پذیری ایال تخمینی در شیمیایی و ماده‌های جیره موجود در استان خوزستان نموده‌های مورد نیاز به یک نیشکر ایجاد می‌شود. این روش در مصرف می‌تواند به عمل‌آوری‌های شیمیایی (استفاده از سوس) (13)، اوره و آمونیاک (31)، اکسیدکلریمی، پراکنده‌های هیدروژن (18) و (31)، عمل آوری فیزیکی (بخار آب اهماس) با در شار (5)، پرتو گاما به تنهایی (5) و (6) نموده شده است. از سمت در نظر گرفته شده نیشکری در انجام کردن (32) و (33) و نیز دیگری از شیمیایی (32) و (33) و همچنین عمل آوری آنزیمی (با استفاده از قارچ) عامل مکروری و آنزیمی اختلاف اشده کرد (10). هر کدام از این عمل آوری‌ها درایا مراقباً و معاوضه سخت‌هستند. بیان بودن هزینه، آلودگی محیط زیست، عدم سهولت کاربرد در سطح وسیع و عدم صنعتی شدن از جمله محدودیت‌های پاکس نیشکر در توزیع روش عمل آوری ماده خشکی محسوب می‌شود (6 و 8). کاربرد روش نیشکر بیوفون آوری نیز مفید بوده که امکان‌زدایی در بخش‌های استفاده می‌سوزد. لیکن هزینه زیادی را در بردارد. این سال‌های اخیر، روش پروتئین مورد توجه و بررسی قرار گرفته است و امید می‌رود پیوند از آن

مواد و روش‌ها

تهیه و پرپوتایی نمونه‌ها

از یک نیشکر پاکس، شرکت کشت و صنعت هفت نیشکر در استان خوزستان، نمونه‌هایی مورد نیاز به ثبت اتفاق در برنامه‌ای تجزیه‌پذیری ایال کرده‌اند. نمونه‌ها به تنهایی عمل آوری‌های شیمیایی (استفاده از سوس) (13)، اوره و آمونیاک (31)، اکسیدکلریمی، پراکنده‌های هیدروژن (18) و (31)، عمل آوری فیزیکی (بخار آب اهماس) با در شار (5)، پرتو گاما به تنهایی (5) و (6) نموده شده است. از سمت در نظر گرفته شده نیشکری در انجام کردن (32) و (33) و همچنین عمل آوری آنزیمی (با استفاده از قارچ) عامل مکروری و آنزیمی اختلاف اشده کرد (10). هر کدام از این عمل آوری‌ها درایا مراقباً و معاوضه سخت‌هستند. بیان بودن هزینه، آلودگی محیط زیست، عدم سهولت کاربرد در سطح وسیع و عدم صنعتی شدن از جمله محدودیت‌های پاکس نیشکر در توزیع روش عمل آوری ماده خشکی محسوب می‌شود (6 و 8). کاربرد روش نیشکر بیوفون آوری نیز مفید بوده که امکان‌زدایی در بخش‌های استفاده می‌سوزد. لیکن هزینه زیادی را در بردارد. این سال‌های اخیر، روش پروتئین مورد توجه و بررسی قرار گرفته است و امید می‌رود پیوند از آن

Jonathan 41

جهت عمل آوری پسماندانهای کشاورزی به منظور تغذیه دام

استفاده نمود (41).

برپرتونینی، یکی از روش‌های عمل آوری مواد خوراکی می‌باشد که

اثر تحقیقاتی روی مواد خوراکی دارد (21). اما یک درصد تحقیقات

بسیار محدودیت در ارتباط با پرتون تاثیب کروماتوگرافی در مواد

خوراکی دام و طیور بهره‌برداری تولید شده است. در آزمایشی که برپرتونینی کروماتوگرافی بر تبرک شیمیایی و

فرآیندهای تجزیه‌پذیری پاکس نیشکر بررسی شده، از دزمای

(200, 200, 200 و 1000 میلی‌گرم) استفاده گردید. نتایج

بین‌نشان داد که مقدار تجزیه‌پذیری مؤثر این مواد در استخراج

شوندها خراس و اسید افزایش پدیدا کرده است (22). بنابر

توجه است که این موضوع اطلاعات بسیار محدود می‌باشد.

پژوهش حاضر به منظور بررسی اثر سطح پرپوتاژی بر

فرآیندهای تجزیه‌پذیری پاکس نیشکر انجام گرفت.

مواد و روش‌ها

تهیه و پرپوتایی نمونه‌ها

از یک نیشکر پاکس، شرکت کشت و صنعت هفت نیشکر در

واقع در استان خوزستان نموده‌های مورد نیاز به ثبت

و انجام کرده‌اند. نمونه‌برداری از یک نیشکر از جوانان مختلف آن به عمق 30 تا

4 سانتی‌متر به عمد 11 نقطه نمونه برداری صورت گرفت.

سپس نمونه‌ها به هم مخلوط و در داخل کیسه‌های ناپایولی

نگهداری شدند. نمونه‌ها به مکان پرپوتاژی برای انتقال داده

شدند و عمل پرپوتایی روی آنها با دستگاه رودودکون مدل

انجام گرفت. نمونه‌های خوراک در معرض پرپو

TT۲۰۰۰ الکترونی با سر ده ۱۰۰ و ۲۰۰ الکترون‌گرم قرار داده شدند. انرژی باریکه

کروماتوگرافی ۱۰ میکرو هیترکت ولت بود و جریان

بیمارکه کروماتوگرافی روي ۳ میلی‌امپر تنظیم (۹) و (۱۷) و روش

پرپوتاژی به صورت یک طرفه انجام شد. برای یک تأیید در مورد

نیاز، نمونه‌ها در چند مرحله پرپوتاژی شدند.

ابتدا ترکیبات شیمیایی نمونه‌های عمل آوری شده و هم‌چنین

نمونه‌های شده به روش تجزیه شیمیایی تعیین گردید. ترکیبات

www.SID.ir
اثر پروتئین آنتی بیوتیک بر فراستحصه‌های تجزیه‌پذیری ماده خشک، الاف...

شیمیایی مورد نیاز در این آزمایش شامل تغییر درصد رطوبت و ماده خشک، الاف نانو‌الحلول در شوینده خشک و اسیدی، بر اساس روش AOAC (4) با 3 تکرار، انداده‌گیری شد.

برای تعیین فراستحصه‌های تجزیه‌پذیری نمونه‌ها از سه رأس گاز بال تذهیب توسط میانگین وزن زندگی 400 کیلوگرم دارای فیستولای شکم‌یابی نموده شد. کارا در سطح نگهداری و با استفاده از خوراک‌های رایج (کاهو، جو و پونجه) تهیه شدند. جریه کمربندی بر اساس 70 درصد ماده خشک علوفه و 30 درصد کسانی (بر حسب ماده خشک) تهیه و در اختیار دام قرار گرفت. بخش کسانی دریا یا خرد شده، کنجاله سویا، کنجاله یپه دامن، سیب و کندم، مخلوط و بیش از مقدار شکم‌یابی از انرژی خشک تأمین شد.

بعد از یک هفته عاده‌های جریه در دو وضعیت مسابقه در ساعت 8 و بعد از ظهر ساعت 15 در اختیار دام قرار داده شد. آب و سگ نکه به طور دائم در اختیار دام قرار داشت. مقدار 4/5 کرم نمونه درکس‌هایی از جنس پی اسرت که به ابعاد 978 میلی‌متر با قطر فضای 25 میلی‌متر بود از هر هر کسه بچه‌های خانواده او لوله‌های لاستیکی نرم و قابل انعطاف‌بخش به طور یک‌پاره فیستولای شکم‌یابی شکم‌گازی کردن گردیدند. برای زمان‌های سه صفحه در 12، 24 و 48 ساعت پس از تزریق نمونه و اثربخشی سنجید.

نتایج
اثر پروتئین آنتی بیوتیک بر فراستحصه‌های تجزیه‌پذیری و تجزیه‌پذیری موثر ماده خشک

فراستحصه‌های مختلف تجزیه‌پذیری و تجزیه‌پذیری موثر ماده خشک مواد خوراکی شاهد و پروتئین شده در جدول 1 نشان
جدول 1. اثر پروتونی بی انتباذ و تجزیه‌پذیری موثر ماده خشک یاگاس نیسکر

<table>
<thead>
<tr>
<th>پروتونی بی انتباذ (کیلوگرمی)</th>
<th>نیروی خشک (گرمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>نزدیک پدری</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نیروی خشک (گرمی)</th>
<th>200/24</th>
<th>30/24</th>
<th>0/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاهد</td>
<td>پدری</td>
<td>پدری</td>
<td>نزدیک</td>
</tr>
</tbody>
</table>

![این جدول را از طریق نمودار یا نمودار مشابه که به عنوان قسمتی از متن موجود استنمایش دهید.](www.SID.ir)
اثر پروتوپاپا به الکترونی بر فراسته‌های تجزیه‌پذیری ماده خشک، الاف ...

جدول ۲. ناپیداد شدن شکم‌های ماده خشک نمونه‌های باگاس نیکر در ساعت‌های مختلف

<table>
<thead>
<tr>
<th>شماره</th>
<th>درجه‌بندی تجزیه‌پذیری</th>
<th>عمل آوری نشده</th>
<th>۱/۰</th>
<th>۲/۱</th>
<th>۳/۲</th>
<th>۴/۳</th>
<th>۵/۱</th>
<th>۶/۱</th>
<th>۶/۲</th>
<th>۶/۳</th>
<th>۶/۴</th>
<th>۶/۵</th>
<th>۶/۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۶</td>
<td>همزمان</td>
<td>۹۶/۹۶</td>
<td>۸۴/۹۶</td>
<td>۷۷/۹۶</td>
<td>۶۹/۹۶</td>
<td>۶۱/۹۶</td>
<td>۵۴/۹۶</td>
<td>۴۷/۹۶</td>
<td>۴۰/۹۶</td>
<td>۳۳/۹۶</td>
<td>۲۶/۹۶</td>
<td>۱۹/۹۶</td>
<td>۱۲/۹۶</td>
</tr>
<tr>
<td>۷۲</td>
<td>همزمان</td>
<td>۷۲/۹۶</td>
<td>۶۵/۹۶</td>
<td>۵۸/۹۶</td>
<td>۵۱/۹۶</td>
<td>۴۴/۹۶</td>
<td>۳۷/۹۶</td>
<td>۳۰/۹۶</td>
<td>۲۳/۹۶</td>
<td>۱۶/۹۶</td>
<td>۱۰/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
</tr>
<tr>
<td>۴۸</td>
<td>همزمان</td>
<td>۴۸/۹۶</td>
<td>۴۱/۹۶</td>
<td>۳۴/۹۶</td>
<td>۲۷/۹۶</td>
<td>۲۰/۹۶</td>
<td>۱۳/۹۶</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
<td></td>
</tr>
<tr>
<td>۲۴</td>
<td>همزمان</td>
<td>۲۴/۹۶</td>
<td>۱۷/۹۶</td>
<td>۱۰/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td>همزمان</td>
<td>۱۲/۹۶</td>
<td>۵/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td>۳/۹۶</td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>همزمان</td>
<td>۶/۹۶</td>
<td>۳/۹۶</td>
<td></td>
</tr>
</tbody>
</table>

درجه حرارت غیرمیانگین در هر ساعت بانک‌گر اختلاف معنی‌دار در سطح معنی‌داری برای ۵٪ است.

جدول ۳. اثر پروتوپاپا به الکترونی بر تجزیه‌پذیری و تجزیه‌پذیری مؤثر الاف نامحلول در شویده خشک باگاس نیکر

<table>
<thead>
<tr>
<th>الاف نامحلول</th>
<th>فراسته‌های تجزیه‌پذیری</th>
<th>شاهد</th>
<th>خطا در جریه دوم منجر</th>
<th>خطای میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS NS</td>
<td>بخش سریع تجزیه</td>
<td>۵/۱۷</td>
<td>۴/۸</td>
<td>۱/۵۱</td>
</tr>
<tr>
<td>NS NS</td>
<td>بخش سریع تجزیه (درصد)</td>
<td>۳/۸/۱</td>
<td>۲/۹/۷</td>
<td>۲۶/۵۳</td>
</tr>
<tr>
<td>NS NS</td>
<td>بخش ترک رنگ تجزیه</td>
<td>۹/۵/۱</td>
<td>۶/۳/۷</td>
<td>۵/۳/۷</td>
</tr>
<tr>
<td>NS NS</td>
<td>ترک رنگ تجزیه پذیری</td>
<td>۰/۸/۲</td>
<td>۰/۵/۲</td>
<td>۰/۳/۷</td>
</tr>
<tr>
<td>NS NS</td>
<td>ترک رنگ تجزیه پذیری (دام)</td>
<td>۰/۸/۲</td>
<td>۰/۵/۲</td>
<td>۰/۳/۷</td>
</tr>
<tr>
<td>NS NS</td>
<td>نرخ عبور ۳ درصد در ساعت</td>
<td>۸/۲/۱</td>
<td>۶/۱/۵</td>
<td>۵/۴/۵</td>
</tr>
<tr>
<td>NS NS</td>
<td>نرخ عبور ۵ درصد در ساعت</td>
<td>۳/۱/۵</td>
<td>۲/۰/۴</td>
<td>۱/۱/۵</td>
</tr>
<tr>
<td>NS NS</td>
<td>نرخ عبور ۸ درصد در ساعت</td>
<td>۲/۰/۴</td>
<td>۱/۲/۳</td>
<td>۰/۱/۲</td>
</tr>
</tbody>
</table>

اثر پروتوپاپا به الکترونی بر ناپیدادشدن الاف نامحلول در شویده خشک

نتایج مقایسه میانگین‌های درصد ناپیدادشدن الاف نامحلول در شویده خشک نشان داد که در همه زمان‌ها به‌جز زمان صفر، بین تیمارهای آزمایشی اختلاف معنی‌داری وجود دارد (جدول ۴). با افزایش زمان انکوباسیون نمونه‌ها در شکمیه، درصد...
جدول ۲: تأثیر شکم‌های الاف تحلیل در شوینده خشک نمونه‌های باگاس نیشکر در ساخت های مختلف

<table>
<thead>
<tr>
<th>دهه‌های پرتوتایی</th>
<th>عمل آوری نشده</th>
<th>۱۰۰ کیلوگرمی</th>
<th>۲۰۰ کیلوگرمی</th>
<th>۳۰۰ کیلوگرمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۹</td>
<td>۱۰/۷۳</td>
<td>۲/۴۷</td>
<td>۱/۷۲</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>۹۸</td>
<td>۱۰/۷۳</td>
<td>۲/۴۷</td>
<td>۱/۷۲</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>۹۷</td>
<td>۱۰/۷۳</td>
<td>۲/۴۷</td>
<td>۱/۷۲</td>
<td>۰/۹۲</td>
</tr>
<tr>
<td>۹۶</td>
<td>۱۰/۷۳</td>
<td>۲/۴۷</td>
<td>۱/۷۲</td>
<td>۰/۹۲</td>
</tr>
</tbody>
</table>

درجه حرارت غرباله در هر سنتون بانگر اختلاف معنی‌دار در سطح معنی‌داری برابر ۵% است.

زیر نتایج تجزیه‌یافته (جدول ۲) با کننده تجزیه‌یافته در ۱۰۰ کیلوگرمی پیشرفت در دهه‌های افزایش گرفته است.

اثر پرتوتایی الاف الکترونی با ناپیش‌دستی آلای نامتخلک در شوینده اسیدی

با افزایش دقیقه پرتوتایی در دهه‌های الاف نامتخلک در شوینده اسیدی در زمان‌های مختلف انگیزه‌ای‌های افزایش یافته بیشترین فیلتر ناپیش‌دستی در ۲۰۰ و ۳۰۰ کیلوگرمی پرتو الکترونی بود (۲۳۵/۲۴۳/۲۵۰). به دلیل ناپیش‌دستی تبیزها در تمام زمان‌ها به‌جز زمان ۷۶ ساعت انگیزه‌ای، تفاوت معنی‌داری (۱/۸۸/۱/۹) در شد (جدول ۳). در زمان ۹۶ ساعت انگیزه‌ای نامتخلک، ذره‌های ۱۰۰ و ۲۰۰ کیلوگرمی به‌هم تفاوت معنی‌داری نداشتند.

بحث

پرتوتایی، یک روش فیزیکی جهت بهبود ارزش تغذیه‌ای و قابلیت هضم مواد خرکاگی به دنبال ارتش بر پرتوتایی الیاف و مواد نرم‌رنگ‌سازی پیش‌آمیخت پرتوتایی شده، تشکیل راکت‌های الیاف و کربنی در اثر برخورداری الاف-پرتوتایی الکترونی را به‌وجود دارد. پرتوتایی الاف-پرتوتایی الکترونی را به‌وجود دارد. بوت‌هایی که این

پرتوتایی الاف را برای آیفکات انحلال‌الاف لکتوژنی و تجزیه میکرو‌فراهم می‌کنند (۲۳۵). پرتوتایی الاف الاف-پرتوتایی الکترونی با باریکه انرژی ۲ مگا الکترونی
جدول 5. اثر پرتو بازی بر تجزیه‌پذیری و تجزیه‌پذیری موثر الایاف نامحلول در شوینده استیدی یاگاس نیک‌کر

<table>
<thead>
<tr>
<th>شاهد</th>
<th>پروتئین شده (کیلوگرم)</th>
<th>میزان 300</th>
<th>میزان 200</th>
<th>میزان 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>NS</td>
<td>0/28</td>
<td>0/34</td>
<td>0/41</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>0/24</td>
<td>0/29</td>
<td>0/34</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>0/28</td>
<td>0/33</td>
<td>0/38</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>0/28</td>
<td>0/34</td>
<td>0/37</td>
</tr>
<tr>
<td>NS</td>
<td>*</td>
<td>0/28</td>
<td>0/34</td>
<td>0/37</td>
</tr>
</tbody>
</table>

بخش سریع تجزیه
در صندوق

بخش کند تجزیه
در صندوق

ثبت نرخ تجزیه پذیری
در ساعت

تجزیه پذیری موثر
نرخ عبرت 2 درصد در ساعت 18/56
نرخ عبرت 5 درصد در ساعت 19/41
نرخ عبرت 8 درصد در ساعت 15/78

جدول 6. تناوبی‌شدن شکم‌های الایاف نامحلول در شوینده استیدی یاگاس نیک‌کر در ساعت‌های مختلف

| همراه با کاهش معنی‌داری در مقادیر نور و الایاف نامحلول در شوینده خشی گردید (30). در پی آزمایش تغییرات، برهاهای نر با کاه جو عمل اوری شده با 37 کیلوگرم پروتئین گرامی نور، تغییر قرار گرفته، می‌تواند به کاهش نیروی این الایاف منجر شده است. ناگهان افتادن می‌باشد (32). مهم‌ترین نشان داده که حلالیت و قابلیت هضم کام گبد با پرتو گاما افزایش می‌یابد.

هسرت کاهش و افزایش می‌یابد (1). گزارش شده است که حلالیت و قابلیت هضم کام گبد با پرتو گاما افزایش می‌یابد (32). مهم‌ترین نشان داده که حلالیت و قابلیت هضم ماده

در جریان غیره‌برکش‌ها به هم‌بستگی دارند، در صفحه بینگکر اختلاف معنی‌داری در سطح معنی‌داری برابر 5% است.

<table>
<thead>
<tr>
<th></th>
<th>96</th>
<th>72</th>
<th>48</th>
<th>24</th>
<th>12</th>
<th>6</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>42/61</td>
<td>39/49</td>
<td>25/45</td>
<td>12/57</td>
<td>10/54</td>
<td>6/57</td>
<td>4/6</td>
<td></td>
</tr>
<tr>
<td>50/25</td>
<td>45/47</td>
<td>28/51</td>
<td>13/69</td>
<td>9/51</td>
<td>5/64</td>
<td>2/7</td>
<td></td>
</tr>
<tr>
<td>50/45</td>
<td>47/35</td>
<td>25/48</td>
<td>11/68</td>
<td>7/52</td>
<td>3/68</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>50/35</td>
<td>45/48</td>
<td>24/59</td>
<td>10/58</td>
<td>6/54</td>
<td>3/67</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>50/25</td>
<td>47/43</td>
<td>25/51</td>
<td>11/57</td>
<td>7/49</td>
<td>4/68</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>35/23</td>
<td>24/58</td>
<td>12/54</td>
<td>6/53</td>
<td>2/64</td>
<td>1/66</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>0/28</td>
<td>0/47</td>
<td>0/56</td>
<td>0/67</td>
<td>0/78</td>
<td>0/89</td>
<td>0/100</td>
<td></td>
</tr>
</tbody>
</table>

مراجع:
14. "پرتو-پاما افزایش بی‌کافی در مقدار نور و الایاف نامحلول در شوینده خشی گردید (30). در پی آزمایش تغییرات، برهاهای نر با کاه جو عمل اوری شده با 37 کیلوگرم پروتئین گرامی نور، تغییر قرار گرفته، می‌تواند به کاهش نیروی این الایاف منجر شده است.

27. "پرتو-پاما ملزوم با پیم الکترونی موجب به تغییرات در استحالتات آن می‌شود. این به‌ویژه می‌تواند در جریان غیره‌برکش‌ها به هم‌بستگی دارند، در صفحه بینگکر اختلاف معنی‌داری در سطح معنی‌داری برابر 5% است.

491
شبگزاری
بدین وسیله از مرکز پرتو بیولوژی فیزیک انجام گرفته و به صورت الکترونیکی بررسی شده و نتایج گرفتهند. تحقیقات علمی بر اساس کلستر بر طوری که طول زنجیره پسیب کوتاه می‌شود. این بسته مطفر است که پروتئین حیبی در دیگر محیط‌ها آپوپتیس می‌کند. اما طول زنجیره پسیب کوتاه می‌شود. به طوری که عمل تخمیر به آسانی روانی نخواهد داد.