شیباهت الگوی پروتئنوز پروتئن استرین‌های جداسازی از مراکز استان‌های هرمزگان و کرمان با استرین‌های برخی دیگر از گونه‌های Xanthomonas

غلام خداکرمیان¹ و زان سویگر²

(تاریخ دریافت: 24/6/1396، تاریخ پذیرش: 8/6/1397)

چکیده
الگوی پروتئنوز الکتروفورز شده 21 استرین (در سطح 200 آنلایوز) حاصل از X. a. pv. aurantifolii X. a. pv. citri X. a. pv. glycine X. a. pv. manihotis X. campesris pv. campesris X. a. pv. phaseoli X. cassavae X. vesicatoria X. c. pv. echinacea X. a. pv. malvacearum X. a. pv. clitoriae X. a. pv. eurlinum X. a. pv. aurantifolii X. a. pv. alfalfa X. cucurbitae X. a. pv. dieffenbachiae X. vasicola X. holcicola X. melonis X. hortorum X. pelargonii X. a. pv. poinsettiaca X. arboricola pv. pruni X. c. pv. raphani X. a. pv. ricini X. a. pv. vasculorum X. a. pv. barbarea X. c. pv. armoricae توسط نشان داد که شیباهت استرین‌های مورد بررسی به طور متوسط پیش از 68% بود. استرین‌های جدایی از استان‌های هرمزگان و کرمان دارای پیشینه کمتری شوافت و کمترین نشانه (بیش از 97%) از استرین‌های شیباهت (100%) به استرین‌های 9176 و X. a. pv. citri LMG 9654 و X. a. pv. citri LMG 7402 و X. c. pv. euphorbia LMG 7444 و X. a. pv. ricini LMG 7402 و X. c. pv. euphorbia LMG 7444 شیباهت کامل الگوی پروتئنوز الکتروفورز استرین‌های جدایی از استان‌های هرمزگان و کرمان به برخی استرین‌های پاتوپ آن X. a. pv. citri 8A شیباهت‌ها در مطالعات پیشین نمی‌تواند راجع به شیباهت شباهت با استرین‌های استان‌های دیگر بود.

Xanthomonas Xanthomonas axonopodis pv. citri

واژه‌های کلیدی: شناسایی باکتریایی مراکز، کرمان، هرمزگان.

مقدمه
پروتئن‌ها یکی از منابع اطلاعاتی مهم برای تعبیه و بررسی‌ها شناسایی و رده‌بندی میکروب‌گانیسم‌ها به وسیله الکتروفورز. پروتئن‌های حساسی است که معمولاً قادر به تفاوت‌یابی شیباهت‌ها و تفاوت‌ها در استرین‌های دیگر استرین‌های یک گونه، ژیر کرنو.

¹ استاد پیمانی شناسایی گیاهی، دانشگاه كشاورزی، دانشگاه بوعلی سینا، همدان
² استاد باکتریایی، دانشگاه علوم، دانشگاه کتی، ژیر

Khodakaramian@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: Khodakaramian@yahoo.com
پروتوتیپ مشابه بوده و ممکن است نتایج خاصی با هم متفاوت باشد. بررسی‌های پژوهشگران مختلف نشان داده که همچنین رابطهای بین میزان شاخص‌های الکتروفورز شده DNA:DNA hybridization و وجود دارد از جمله کاتاور و همکاران (6) مشاهده گردید که ابر‌پروتوتیپ‌ها به یک یا 2 پروتوتیپ در الکتروفورز پروتوتیپ مشابه DNA 76 تفاوت‌های قابل توجهی در الکتروفورز شده پروتوتیپ دیده می‌شود. اهمیت روش الکتروفورز در رده‌بندی ابر‌پروتوتیپ Xanthomonas (7) این است که به سیستم‌های الکتروفورزی می‌تواند در استفاده ابر‌پروتوتیپ در جنگلی‌ها و چندین شایسته DNA کمتر از 70 درصد تفاوت‌های قابل توجهی در الکتروفورز شده پروتوتیپ دیده می‌شود. اهمیت روش الکتروفورز در رده‌بندی است. هیپوژینیک (5) غزارش گردید و بعد توسط واژنر و همکاران به Xanthomonas صورت و سیستم‌های الکتروفورزی است. سایر موارد ابزار الکتروفورزی خاص است تا نشان داده شود که بررسی الکتروفورز پروتوتیپ به تنهایی برای تفکیک و شناسایی پاتوورا و حتی گونه‌های یک جنس کافی نیست و باید از روش‌های دیگر همراه با بررسی سیستم‌های الکتروفورزی و ناهیدگی گونه‌های مختلف یک کنترل گرفته از نظر مشابه‌های خاص که کافی نبوده و تا زمانی که نیاز بود، با کیفیت نمی‌باشد. بررسی الکتروفورزی برای شناسایی و حفظ نامه‌های مختلف یک کنترل گرفته از نظر مشابه‌های خاص که کافی نبوده و تا زمانی که نیاز بود، با کیفیت نمی‌باشد.

Xanthomonas

عکس‌برداری‌های مختلف تجزیه آزمایشات کروم‌باتریستیک در 150 است. سایر استیل X. c. pv. pelargonii و Hortorum.

Xanthomonas

مشابه‌های مختلف جهان، نتیجه گرفته که این دو پاتوورا شبیه بوده ولی از قابل تفکیک هستند. در بررسی X. c. pv. campestris گستره‌ها روش الکتروفورز پروتوتیپ 70 است. از گونه‌های X. campestris به وسیله browser27 پاتوورا از Xanthomonas جنس و این همکاران (12) در 19 دسته، غزارش گردید.

استریپاتکی های مورد استفاده در جداول 2 و 6 نشان داده شده‌اند.

الکتروفورز پروتوتیپ‌های سرلولی و تجزیه آنها به نرم افزار Gel Compar

Xanthomonas استریپاتکی های نامیده گونه‌های مختلف و پنج
جدول ۱. استریئ های بروسی شده Xanthomonas axonopodis

<table>
<thead>
<tr>
<th>نام بافتور</th>
<th>شماره استریئ</th>
<th>محل جدا سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 680, 9654, 9659</td>
<td>نیوزلند</td>
</tr>
<tr>
<td>X.a. pv. aurantifolii</td>
<td>LMG - 9181, 9183</td>
<td>آرژانتین</td>
</tr>
<tr>
<td>X.a. pv. citrumelo</td>
<td>LMG - 9163</td>
<td>آمریکا</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>R- 4818, 4867, 4869, 4891, 4904, 4906, 4907, 4917, 4929, 5226, 5235, 5237, 5239, 5243, 5242</td>
<td>ایران</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>422, 5423, 5427, 5439, 5440, 5442, 5443, 5424</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. مقایسه شده با استریئ های X. axonopodis pv. citri

<table>
<thead>
<tr>
<th>نام استریئ</th>
<th>شماره استریئ</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.a. pv. alfalfa</td>
<td>LMG - 8080</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 7383</td>
</tr>
<tr>
<td>X.a. pv. aurantifolii</td>
<td>LMG - 8240, 8242</td>
</tr>
<tr>
<td>X.a. pv. citrumelo</td>
<td>LMG - 7385, 547</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 568, 575, 947, 8095, 7514</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 8048, 8237</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 480, 681, 682, 683, 8650, 8653, 8654, 8657, 9176, 9178, 9652, 9653, 9655, 9656, 9657, 9654, 9659, 9660, 9662, 9663, 9664, 9666, 9667, 9668, 9669, 9670, 9671, 9672</td>
</tr>
<tr>
<td>X.a. pv. aurantifolii</td>
<td>LMG - 9182, 9185</td>
</tr>
<tr>
<td>X.a. pv. citri</td>
<td>LMG - 9168, 9321</td>
</tr>
<tr>
<td>X.a. pv. clitoriae</td>
<td>LMG - 9045</td>
</tr>
<tr>
<td>X.a. pv. cucurbitae</td>
<td>LMG - 7479, 8689</td>
</tr>
<tr>
<td>X.a. pv. dieffenbachiae</td>
<td>LMG - 695, 8664</td>
</tr>
<tr>
<td>X.a. pv. ephorbiae</td>
<td>LMG - 863, 7402</td>
</tr>
<tr>
<td>X.a. pv. glycis</td>
<td>LMG - 712, 7488, 8023, 8125, 8128</td>
</tr>
<tr>
<td>X.a. pv. malvaceraum</td>
<td>LMG - 736</td>
</tr>
<tr>
<td>X.a. pv. manihotis</td>
<td>LMG - 760, 763, 764, 7426, 7427, 7428, 7429, 9572, 11169</td>
</tr>
<tr>
<td>X.a. pv. melonis</td>
<td>LMG - 766, 769, 771, 777, 779, 780, 784</td>
</tr>
<tr>
<td>X.a. pv. phaseoli</td>
<td>LMG - 8673</td>
</tr>
<tr>
<td>X.a. pv. poinsettica</td>
<td>LMG - 7312, 7314</td>
</tr>
<tr>
<td>X.a. pv. pelargonii</td>
<td>LMG - 823, 834, 8014</td>
</tr>
<tr>
<td>X.a. pv. phaselo</td>
<td>LMG - 849, 8677, 8678</td>
</tr>
<tr>
<td>X.a. pv. poineettica</td>
<td>LMG - 851</td>
</tr>
<tr>
<td>X.a. pv. raphani</td>
<td>LMG - 864, 7442, 7444, 8683</td>
</tr>
<tr>
<td>X.a. pv. ricini</td>
<td>LMG - 902</td>
</tr>
<tr>
<td>X.a. pv. vascularorum</td>
<td>LMG - 667, 668, 904, 905, 906, 907, 908, 910, 913, 914, 922, 7514</td>
</tr>
<tr>
<td>X.a. pv. vignicola</td>
<td>LMG - 839, 8138</td>
</tr>
</tbody>
</table>

پاتوتیب شناخته شده باکتری عامل بیماری های شانکر و لکه بروسی داده شده واحد Xanthomonas axonopodis pv. citri به دست آمده است. این بروسی باعث شده حداقل ۱۹۰ مورد استفاده قرار گرفت. آدرس این بروسی از مرکبات جنوب ایران جداسازی و وزن‌های فنوهای بیماری‌زایی‌ها، بیماری‌زایی‌ها و دامنه‌های مجزای آنها توسط حد اکثر مرکبات و همکاران بروسی کرده‌های بود. این بروسی که در حداقل ۱۹۰ مورد استفاده قرار گرفت (۱ و ۲) باعث شده که در تعدادی از مرکبات جنوب ایران جداسازی و وزن‌های فنوهای بیماری‌زایی‌ها، بیماری‌زایی‌ها و دامنه‌های مجزای آنها توسط حد اکثر مرکبات و همکاران بروسی کرده‌های بود.

265
نتایج و بحث

نتایج مقایسه کلکسیون کروتوفرز پرتونهای محلول سالنی استرس‌های مورد بررسی به فنکیکی در جدول ۳ و میانگین شاخصرد استرس‌های سایر استرس‌های داده‌های Xanthomonas دوره مورد بررسی محاسبه گردید.

همانطور که در جدول ۳ و ۴ دیده می‌شود میانگین شاخصگرای کلکسیون کروتوفرز پرتونهای قبل استرس‌های Xanthomonas axonopodis به داده‌های استرس‌های مورد بررسی از سایر استرس‌های Xanthomonas دوره مورد بررسی محاسبه می‌شود. شاخص یا برای استرس‌های X. axonopodis جدا شده از عوامل حساسیت روش کروتوفرز پرتونی می‌باشد که با نتایج می‌پراکند. نتایج این بررسی نشان داده که روش کروتوفرز پرتونی در مقایسه با روش آنالیز استرس‌های جریان این پاتوژن با روش کروتوفرز پرتونی است. فعالیت این پاتوژن با روش کروتوفرز پرتونی از دست آمده. این نتایج با داده‌های به دست آمده از بررسی دانش میزان و نتایج پاتوژنیک پاتوژنیک X. axonopodis. 183

کش (GYCA(Glucose Yeast Chalk Agar) گلوکز: 5% /% شیره مخمیر: 3% /% کربنات کلسیم و 2% /% آگار بود. کش (PD) پدی و دارای شده. استخراج پروتئین و کروتوفرز در ذل پلی اکریل این (SDS-PAGE) رنگ آمیزی، رنگ‌بری کردن و اسکن گردنژا و برداشت داده‌های به دست آمده با روش

و این پاتوژنیک (DATA normalization) و تجزیه داده‌ها Gel Compar با استفاده از نرم‌افزار گایانه (DATA analysis) انجام داده‌های داده‌های به دست آمده با کش این استرس‌ها به ویژه از دید بیماری‌شناسی گام‌های می‌باشد. شاخص استرس‌های X. axonopodis از نظر ویژگی‌های بیماری‌زا در سه پاتوژنیک X. a. pv. aurantiifolii A ba تیرپین‌ها X. a. pv. citrus A 18 114 و این میزان از شاخصهای نیز با سایر داده‌های بررسی‌های قبلی از جمله ویژگی‌های فونتیویت و دامن میزان‌های آنها داشته و گونه‌ها قابل توجه این استرس‌ها به ویژه از دید بیماری‌شناسی گام‌های می‌باشد. شاخص استرس‌های X. axonopodis از نظر ویژگی‌های بیماری‌زا در سه پاتوژنیک X. a. pv. aurantiifolii A ba تیرپین‌ها X. a. pv. citrus A 18 114 و این میزان از شاخصهای نیز با سایر داده‌های بررسی‌های قبلی از جمله ویژگی‌های فونتیویت و دامن میزان‌های آنها داشته و گونه‌ها قابل توجه این استرس‌ها به ویژه از دید بیماری‌شناسی گام‌های می‌باشد. شاخص استرس‌های X. axonopodis از نظر ویژگی‌های بیماری‌زا در سه پاتوژنیک X. a. pv. aurantiifolii A ba تیرپین‌ها X. a. pv. citrus A 18 114 و این میزان از شاخصهای نیز با سایر داده‌های بررسی‌های قبلی از جمله ویژگی‌های فونتیویت و دامن میزان‌های آنها داشته و گونه‌ها قابل توجه این استرس‌ها به ویژه از دید بیماری‌شناسی گام‌های می‌باشد. شاخص استرس‌های X. axonopodis از نظر ویژگی‌های بیماری‌زا در سه پاتوژنیک X. a. pv. aurantiifolii A ba تیرپین‌ها X. a. pv. citrus A 18 114 و این میزان از شاخصهای نیز با سایر داده‌های بررسی‌های قبلی از جمله ویژگی‌های فونتیویت و دامن میزان‌های آنها داشته و گونه‌ها قابل توجه این استرس‌ها به ویژه از دید بیماری‌شناسی گام‌های می‌باشد. شاخص استرس‌های X. axonopodis از نظر ویژگی‌های بیماری‌زا در سه پاتوژنیک X. a. pv. aurantiifolii A ba تیرپین‌ها X. a. pv. citrus A 18 114 و این میزان از شاخصهای نیز با سایر داده‌های بررسی‌های قبلی از جملе
جدول 3: میزان شایت‌گی‌های پروتئین استرین‌های X. a. pv. citri محصول سلولی استرین‌های Xanthomonas هرمزگان و کرمان با استرین‌های برخی از گونه‌های نام باکتری

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>X. a. pv. citri R- 4867</th>
<th>X. a. pv. citri R- 4869</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9 176</td>
<td>100.00</td>
<td>X. a. pv. citri LMG 8657</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9662</td>
<td>90.80</td>
<td>X. a. pv. citri LMG 9663</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 99669</td>
<td>89.00</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 8657</td>
<td>87.00</td>
<td>X. a. pv. citri LMG 9672</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 682</td>
<td>87.70</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 680</td>
<td>86.50</td>
<td>X. a. pv. citri LMG 9659</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 681</td>
<td>86.40</td>
<td>X. a. pv. citri LMG 9666</td>
</tr>
<tr>
<td>X. a. pv. aurantifolii LMG 9182</td>
<td>86.00</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. vesicatoria LMG 907</td>
<td>90.20</td>
<td>X. a. pv. citri LMG 8650</td>
</tr>
<tr>
<td>X. vesicatoria LMG 908</td>
<td>88.00</td>
<td>X. a. pv. citri LMG 9668</td>
</tr>
<tr>
<td>X. vesicatoria LMG 922</td>
<td>86.40</td>
<td>X. a. pv. citri LMG 9652</td>
</tr>
<tr>
<td>X. e. euphorbiae LMG 863</td>
<td>87.10</td>
<td>X. a. pv. citri LMG 8654</td>
</tr>
<tr>
<td>X. c. arracaciae LMG 8242</td>
<td>86.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>X. c. pv. campestris LMG 568</th>
<th>X. a. pv. citri R- 4891</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>80.20</td>
<td>X. a. pv. citri LMG 9654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>X. a. pv. citri R- 5427</th>
<th>X. a. pv. citri R- 5239</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 681</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>86.20</td>
<td>X. a. pv. citri LMG 680</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9178</td>
<td>86.30</td>
<td>X. a. pv. citri LMG 9671</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>X. a. pv. citri R- 5424</th>
<th>X. a. pv. citri R- 4929</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 680</td>
<td>86.70</td>
<td>X. a. pv. citri LMG 680</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9178</td>
<td>86.30</td>
<td>X. a. pv. citri LMG 681</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>86.10</td>
<td>X. a. pv. aurantifolii LMG 9182</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>87.90</td>
<td>X. a. pv. malvacearum LMG 7427</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>87.40</td>
<td>X. a. pv. glycines LMG 7488</td>
</tr>
<tr>
<td>X. a. pv. elitariae LMG 9045</td>
<td>87.70</td>
<td>X. a. pv. manihotis LMG 766</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام باکتری</th>
<th>X. a. pv. citri R- 5422</th>
<th>X. a. pv. citri R- 4906</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citridelmo LMG 9168</td>
<td>85.00</td>
<td>X. a. pv. citri LMG 9176</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>85.60</td>
<td>X. a. pv. citri LMG 9662</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>85.20</td>
<td>X. a. pv. citri LMG 9669</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 947</td>
<td>85.00</td>
<td>X. a. pv. citri LMG 682</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>85.40</td>
<td>X. vesicatoria LMG 907</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. vesicatoria LMG 922</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X. a. pv. vasculorum LMG 902</td>
</tr>
<tr>
<td>X. a. pv. citri R-4904</td>
<td>X. a. pv. citri R-5440</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>X. a. pv. citrumelo LMG 9168</td>
<td>89.60</td>
<td>X. a. pv. citri LMG 9178</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>87.20</td>
<td>X. a. pv. malvacearum LMG 7427</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>90.70</td>
<td>X. a. pv. malvacearum LMG 7429</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7427</td>
<td>89.60</td>
<td>X. a. pv. glycines LMG 7488</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 9572</td>
<td>86.70</td>
<td>X. a. pv. glycines LMG 8128</td>
</tr>
<tr>
<td>X. a. pv. glycines LMG 8128</td>
<td>86.30</td>
<td>X. a. pv. manihottis LMG 779</td>
</tr>
<tr>
<td>X. c. pv. raphani LMG 8010</td>
<td>88.20</td>
<td>X. c. pv. campestris LMG 569</td>
</tr>
<tr>
<td>X. a. pv. clitoriae LMG 9045</td>
<td>87.30</td>
<td>X. a. pv. clitoriae LMG 9045</td>
</tr>
<tr>
<td>X. vesicatoria LMG 904</td>
<td>86.70</td>
<td>X. a. pv. poinsettica LMG 849</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. aurantifoli LMG 9181</th>
<th>X. a. pv. aurantifoli LMG 9654</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. glycines LMG 712</td>
<td>90.90</td>
</tr>
<tr>
<td>X. a. pv. glycines LMG 8023</td>
<td>87.00</td>
</tr>
<tr>
<td>X. a. pv. phaseoli LMG 834</td>
<td>86.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri LMG 9178</th>
<th>X. a. pv. citri R-5226</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9178</td>
<td>86.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-4917</th>
<th>X. a. pv. citri R-5443</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<p>| X. a. pv. citri LMG 9662 | 90.30 | X. a. pv. citri LMG 9666 | 89.90 |
| X. a. pv. citri LMG 682 | 87.30 | X. a. pv. citri LMG 9670 | 89.90 |
| X. a. pv. citri LMG 8657 | 86.90 | X. a. pv. citri LMG 9664 | 89.90 |
| X. a. pv. citri LMG 8650 | 86.30 | X. a. pv. citri LMG 682 | 89.50 |
| X. a. pv. citri LMG 9672 | 85.80 | X. a. pv. citri LMG 9653 | 89.10 |
| X. a. pv. citri LMG 9669 | 85.50 | X. a. pv. citri LMG 8650 | 88.90 |
| X. c. pv. euphorbiae LMG 863 | 89.90 | X. a. pv. citri LMG 9660 | 88.30 |
| X. c. pv. euphorbiae LMG 7402 | 84.90 | X. a. pv. citri LMG 8657 | 88.20 |
| X. vesicatoriae LMG 922 | 88.00 | X. a. pv. citri LMG 9652 | 88.10 |
| X. vesicatoriae LMG 907 | 89.00 | X. a. pv. citri LMG 9654 | 87.80 |
| X. vesicatoriae LMG 7514 | 86.60 | X. a. pv. citri LMG 8650 | 87.70 |
| X. vesicatoriae LMG 908 | 86.50 | X. a. pv. citri LMG 9657 | 87.60 |
| X. vesicatoriae LMG 905 | 85.10 | X. a. pv. citri LMG 9659 | 87.40 |
| X. a. pv. glycines LMG 712 | 87.30 | X. a. pv. citri LMG 9663 | 87.00 |
| X. a. pv. glycines LMG 8125 | 85.40 | X. a. pv. citri LMG 680 | 87.00 |
| X. c. pv. campestris LMG 268 | 86.90 | X. a. pv. citri LMG 8652 | 86.90 |
| X. c. pv. campestris LMG 7514 | 86.60 | X. a. pv. citri LMG 9667 | 86.70 |
| X. cassavae LMG 8237 | 86.80 | X. a. pv. citri LMG 9656 | 86.50 |
| X. c. pv. arracaciae LMG 8242 | 86.70 | X. a. pv. citri LMG 681 | 86.30 |
| X. a. pv. manihottis LMG 769 | 86.20 | X. a. pv. citrumelo LMG 9321 | 89.20 |
| X. a. pv. malvacearum LMG 7427 | 86.10 | X. c. pv. campestris LMG 568.A | 88.40 |
| X. c. pv. barbareae LMG 547 | 86.10 | X. c. pv. barbareae LMG 7385 | 87.10 |
| X. a. pv. poinsettica LMG 8677 | 85.90 | X. a. pv. poinsettica LMG 8677 | 85.90 |
| X. cucurbitae LMG 7479 | 85.50 | X. a. pv. poinsettica LMG 8677 | 85.90 |
| X. a. pv. vignicola LMG 8138 | 85.20 | X. a. pv. dieffenbachiae LMG 695 | 85.10 |
| X. a. pv. ricini LMG 7444 | 84.90 | X. a. pv. ricini LMG 7444 | 84.90 |</p>
<table>
<thead>
<tr>
<th>X. a. pv. citri R-5235</th>
<th>X. a. pv. aurantifolii LMG 9658</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. dieffenbachiae LMG 8664</th>
<th>X. a. pv. citri R-5426</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. manihotis LMG 777</td>
<td>88.20</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 771</td>
<td>86.40</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 780</td>
<td>86.30</td>
</tr>
<tr>
<td>X. vasicola pv. holcicola LMG 736</td>
<td>88.10</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 7442</td>
<td>87.80</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 864</td>
<td>87.40</td>
</tr>
<tr>
<td>X. a. pv. ricini LMG 8683</td>
<td>86.70</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>87.80</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 8005</td>
<td>86.50</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 575</td>
<td>86.50</td>
</tr>
<tr>
<td>X. cucurbiteae LMG 8689</td>
<td>87.20</td>
</tr>
<tr>
<td>X. arboricola pv. pruni LMG 851</td>
<td>87.10</td>
</tr>
<tr>
<td>X. c. pv. armoraciae LMG 7383</td>
<td>87.00</td>
</tr>
<tr>
<td>X. c. pv. arracaciae LMG 8240</td>
<td>87.00</td>
</tr>
<tr>
<td>X. horatorium pv. pelargonii LMG 7314</td>
<td>86.50</td>
</tr>
<tr>
<td>X. horatorium pv. pelargonii LMG 7312</td>
<td>86.40</td>
</tr>
<tr>
<td>X. melonis LMG 8673</td>
<td>86.40</td>
</tr>
<tr>
<td>X. c. pv. raphani LMG 7505</td>
<td>86.40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X. a. pv. citri R-4894</th>
<th>X. a. pv. citri R-5423</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri LMG 9176</td>
<td>87.20</td>
</tr>
<tr>
<td>X. a. pv. aurantifolii LMG 9185</td>
<td>86.70</td>
</tr>
<tr>
<td>X. a. pv. citrumelo LMG 9168</td>
<td>86.60</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 683</td>
<td>86.50</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 682</td>
<td>86.30</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7428</td>
<td>90.90</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7429</td>
<td>90.00</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 760</td>
<td>88.80</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 7426</td>
<td>87.90</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 764</td>
<td>87.70</td>
</tr>
<tr>
<td>X. a. pv. malvacearum LMG 763</td>
<td>86.90</td>
</tr>
<tr>
<td>X. vesicatoria LMG 908</td>
<td>90.10</td>
</tr>
<tr>
<td>X. vesicatoria LMG 922</td>
<td>88.60</td>
</tr>
<tr>
<td>X. vesicatoria LMG 668</td>
<td>88.30</td>
</tr>
<tr>
<td>X. vesicatoria LMG 914</td>
<td>87.40</td>
</tr>
<tr>
<td>X. vesicatoria LMG 905</td>
<td>87.30</td>
</tr>
<tr>
<td>X. vesicatoria LMG 913</td>
<td>86.70</td>
</tr>
<tr>
<td>X. c. pv. barbareae LMG 547</td>
<td>89.60</td>
</tr>
<tr>
<td>X. a. pv. glycins LMG 712</td>
<td>89.30</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>88.20</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae LMG 695</td>
<td>87.30</td>
</tr>
</tbody>
</table>
جدول 2. میانگین شباهت الگوی پروتئین استرین های بررسی شده Xanthomonas axonopodis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X. a. pv. citri</td>
<td>88.59 (86)</td>
<td>88.79 (11)</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. glycin</td>
<td>87.19 (8)</td>
<td>88.40 (4)</td>
<td>X. a. pv. citri LMG 9666</td>
</tr>
<tr>
<td>X. a. pv. manihotis</td>
<td>86.62 (6)</td>
<td>87.30 (2)</td>
<td>X. a. pv. citri LMG 9663</td>
</tr>
<tr>
<td>X. c. pv. campestris</td>
<td>86.07 (11)</td>
<td>88.85 (2)</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. a. pv. citri</td>
<td>86.60 (1)</td>
<td>86.95 (2)</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 6568</td>
<td>86.70</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9654</td>
</tr>
<tr>
<td>X. cassavae LMG 6048</td>
<td>86.20</td>
<td>86.70</td>
<td>X. a. pv. citri LMG 9656</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9669</td>
<td>87.40</td>
<td>90.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9662</td>
<td>87.70</td>
<td>90.20</td>
<td>X. a. pv. citri LMG 9666</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9672</td>
<td>87.30</td>
<td>90.20</td>
<td>X. a. pv. citri LMG 9663</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9657</td>
<td>86.80</td>
<td>89.10</td>
<td>X. a. pv. citri LMG 9672</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9660</td>
<td>86.60</td>
<td>89.90</td>
<td>X. a. pv. citri LMG 9659</td>
</tr>
<tr>
<td>X. a. pv. glycines LMG 712</td>
<td>88.20</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9667</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 784</td>
<td>88.20</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9668</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 769</td>
<td>86.40</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9652</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 8504</td>
<td>86.40</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. a. pv. phaseolii</td>
<td>87.80</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9321</td>
</tr>
<tr>
<td>X. c. pv. campestris LMG 568</td>
<td>86.20</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9664</td>
</tr>
<tr>
<td>X. cassavae</td>
<td>86.80 (1)</td>
<td>86.20 (1)</td>
<td>X. a. pv. citri LMG 9667</td>
</tr>
<tr>
<td>X. a. pv. citri LMG 9669</td>
<td>87.40</td>
<td>90.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. manihotis LMG 8657</td>
<td>87.20</td>
<td>90.20</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. a. pv. phaseolii</td>
<td>87.80</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9664</td>
</tr>
<tr>
<td>X. c. pv. campestris</td>
<td>86.53 (3)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9670</td>
</tr>
<tr>
<td>X. a. pv. alfae</td>
<td>87.20 (2)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9656</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. a. pv. pulicaria</td>
<td>86.10 (1)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. a. pv. melonis</td>
<td>88.40 (1)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9652</td>
</tr>
<tr>
<td>X. a. pv. pulicaria</td>
<td>86.10 (1)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9653</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9657</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>86.40 (1)</td>
<td>86.90</td>
<td>X. a. pv. citri LMG 9652</td>
</tr>
<tr>
<td>X. a. pv. pulicaria</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9658</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
<tr>
<td>X. a. pv. dieffenbachiae</td>
<td>87.07 (6)</td>
<td>87.90</td>
<td>X. a. pv. citri LMG 9660</td>
</tr>
</tbody>
</table>

اعتاد داخل پاتنر تعداد استرین های بررسی شده را نشان می‌دهد.

--- = بررسی نشده است.

برروی همانندگی ذری عامل‌کردن یکسان در سلول زندگی پروتئینی عمده‌ای بر پایه بررسی الگوی تک‌پروتئین در SDS-PAGE نوارهای را تفکیک نماید. با توجه به نتایج روش تمیز‌کننده و ایفای نقش یک پروتئین در

نرم‌افزار انجام شده. نتیجه نشان دهنده در ترمیم محققان در

ایجاده یک پروتئین در دسترسی باربران زمینل، راه‌های فیزیولوژیکی در SDS-PAGE

ورزشی را نشان می‌دهد.
طلول زندگی ساختمان اولیه با ترتیب قرارگرفتن استخوانهای آمیزه، نقش تعیین کننده دارد. این واقعیت به روشی از داده‌های قبیل استنتاج است چرا که مشاهده می‌شود با یک گونه‌ای مانند X. a. pv. X. vesicatoria LMG 19707 و X. a. pv. glycin LMG 712 malvacearum LMG 764 به استخوانهای X. axonopodis LMG 7479 عامل پیام‌دهان باکتری‌های مارکات جنوب ایران یکسان و یا حتی بیش از مشاهده‌گونهای این استخوانهای به‌هم‌پیوسته می‌باشد. این یافته به روش‌شناسی یکی از اهداف این بررسی که به دقت به آن اشاره شده، در برآورده نموده و ضرورت بهکارگیری سایر روش‌ها را برای تفکیک استخوانهای مختلف این می‌باشد و دست آمده به یک گونه کوئت‌هبندی می‌کند. می‌باشد این گونه‌ها میل به کنترل سایر متقابل و، جنگ‌های باعث نیاز دانه‌ی نااصorb این بررسی نبوده. این روش برای تفکیک استخوانهای در حدود یک گونه‌ی دانه‌یا به دقت ترکیب‌های با پاتون‌های سطح تاکسومیکی می‌باشد. این روش به تکنیک‌های ترکیب‌های نیز کمک گرفته شده است. از جمله در بررسی 200 سطح استخوانهای X. campestris بستر و Xanthomonas جنس 27 و پاتون‌های از Xanthomonas قبیل و اکثرین و همکاران (13) تعداد 19 دسته از هم‌پیوسته قابل تفکیک بودند. این روش برای تفکیک استخوانهای در حدود پاتون‌های هم‌پیوسته این دسته با پاتون‌های این سطح تاکسومیکی می‌باشد. این روش به تکنیک‌های وارد کمک گرفته شود. نتایج این روش کریزی شما را به یک این استخوانهای جنس Xanthomonas ساخته شده از مارکات استخوانهای مشاهده‌ای همزمان که با استخوانهای پاتون‌های A بوده و این گونه بیماری‌زایی آنها که در بررسی‌های پیشین تعیین شده بود (1 و 2) نابود می‌باشد.

منابع مورد استفاده
1. خداکرمان، غ، ج، رحیمیان، و محمدی، ع، علامت، 1378 خصوصیات فونوتیپی دانه‌ی میزبانی و چگونگی پرکارشک استخوانهای Xanthomonas axonopodis باکتری. عامل شناسی مارکات جنوب ایران، بیماری‌های گیاهی 35 (1، 2): 101-111.
2. خداکرمان، غ، پالسین، رحیمیان، و محمدی، ع، علامت، 1379. گونه‌بندی استخوانهای بیماری‌زایی عامل ایجاد زخم و

www.SID.ir
لکه برگی مربوط در آسیا، آمریکا و استرالیا بر اساس الگوی الکتروفرورز پروتئین و سیستم بیولوگی. بیماری‌های گیاهی

3. علی‌زاده، ع. و ح. رحیمیان. ۱۳۶۹. شاکر باکتریایی مربوط در استان کرمان. بیماری‌های گیاهی ۱۳۱: ۱۱۸.

4. مستوفی زاده قلی‌نژاد. ۱۳۷۵. بررسی استرین‌های عامل شاکر باکتریایی مربوط در جنوب ایران. پایان‌نامه کارشناسی ارشد. دانشگاه کشاورزی، دانشگاه تربیت مدرس، تهران.

