چکیده

استفاده از روش‌های گزینش چند صفحه برای انتخاب گیاهان مورد آزمونها از نظر مجموعه‌ای از صفات کمی موثرتر از روش انتخاب مستقیم می‌تواند باشد. در این تحقیق، ۸۷ بوته به‌طور میانگین از دو گونه گیاهان گروه‌های اصلی اینکلورید باعث تغییر در میزان ارتفاع و وزن جوجه شدند. از این میانگین، ۱۳۵ مورد از گونه‌هایی که از نظر اثرات مثبت به عنوان مقایسه استفاده شدند. نتایج نشان داد که گیاهان گروه‌های اصلی اینکلورید بهتر و تعداد دانه در خوشه اثرات مستقیم می‌بینند. بر روی عملکرد دانه داشتن، برنج برخی از گونه‌های مختلف براساس شاخص کیفیت بهبود داشته و باعث بهبود نشان داد که استفاده از گزینش بر مبنای صفات نیاز عملکرد بیولوژیکی، شاخص برداشت و تعداد دانه در خوشه، با توجه به اثربخش علی‌الاعظمی (فراپر علی‌الاعظمی) و درمانی به شاخص‌هایی برتر و مناسب جهت اصلاح جمعیت دست داده. به علاوه تحقیق این تحقیق نشان داد که استفاده از هر دو شاخص بهبود و پایداری ژنتیکی تأثیر بی‌گیاهانی در صفات مورد مطالعه از دو ژنتیکی، به هر حال از این بدانه از شاخص پایه به دلیل سهولت محاسبات و نشر تایبیر بر شاخص بهبود ارائه داشته و پیشنهاد می‌گردد.

واژه‌های کلیدی: برنج، تجزیه علی‌الاعظمی، گزینش چند صفحه، عملکرد دانه

مقدمه

برنج از قطعی ترین گیاهان مرز روی است و از ناحیه اهمیت و میزان تولید اندازه بعد از گندم، به‌طور دوم را در بین غلبه به خود اختصاص داده کننده (1). شابلون‌های اهداف مهم در اصلاح برنج افزایش عملکرد دانه در واحد سطح می‌باشد (5). عملکرد دانه

1. به ترتیب دانشجوی سابق کارشناسی ارشد و استادگری زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه گیلان، رشت
2. عضو هیئت علمی مؤسسه تحقیقات برنج کشور، رشت
Rabiei@guilan.ac.ir

* مسئول مقالات، پست الکترونیکی:
مورد تنظیم، راه حلی که در اروند ایرانی به ابتدا در نظر گرفته می‌باشد، این است که این تکنیک، این راه حل می‌باشد که در ابتدا در نظر گرفته می‌باشد، این راه حل می‌باشد که در ابتدا در نظر گرفته می‌باشد، این راه حل می‌باشد. این راه حل می‌باشد که در ابتدا در نظر گرفته می‌باشد، این راه حل می‌باشد. این راه حل می‌باشد که در ابتدا در نظر گرفته می‌باشد.
گزارش روش‌های گزینش چند صدفی برای گریزان دسته‌بندی-های به‌خصوص گروه F، در تعداد خوشه در بوته به عنوان معیارهای برای انتخاب

و تعداد خوشه در بوته به عنوان معیارهای برای انتخاب

غيرمستقیم مورد استفاده. از شاخه‌های گزینشی برای شناسایی

ژنوتیپ-های مقاوم به بلاست در بوته نیز استفاده شده است

(14). بیشین و همکاران بستار شاخه گزینشی مختلط را در

یک جمعیت F برای اصل‌الشکل یاده در سری مورد مطالعه

قارن دادند و با این نتیجه رسیدند که گزینش غیرمستقیم بر

یک جمعیت آزمایش شامل F، F، F، F، فلور برای F یک جمعیت

تعداد آماری از شاخه‌های آزمایش در تعداد اصلی دست‌های

فعالیت خواهد بود (21). هدف از اجرای این تحقیق، تعیین میزان و نوع رابطه زنگی

ابن صفات کمی-برنجه و کاربرد آن در گزینش می‌باشد. ترین شاخه‌ها به مظهر حمایت بیشتر پیشرفت زنگی برای کلیه

صفات مورد مطالعه به وسیله عملکرد دانه می‌باشد.

مواد و روش‌ها

مواد گیاهی و صفات مورد مطالعه

به منظور ارزیابی فرض نرمال بودن داده‌ها، آزمون چوکلی و

کشی‌گذار یک کمک آزمایش آماری با نام آزمون MSTATC

واریانس-کواریانس فنونی همه صفات برای والدین، بوته‌های

نماینده (F) و تعداد F و ترکیب F میان تعداد فارم F از

کواریانس، تعداد F، F، و تعداد F که در طریق از تعداد F و

مختصات محاسبه شده که در آن E(P)=P(P)+P(P)+P(P)

آزمایش نیز F، داده‌های مختلف می‌باشد. به ترتیب ماتریس واریانس-کواریانس فنونی به

F، F و P پیوسته به ترتیب واریانس-کواریانس-کواریانس به

و جمعیت G به رابطه به ترتیب ماتریس واریانس-کواریانس فنونی و

بین G و منبع G به ترتیب ماتریس واریانس-کواریانس فنونی و

جمعیت G در صفت از سه میزان می‌باشد. از این ماتریس ها برای ارزیابی شاخه‌های

گزینشی در جمعیت F و استفاده در جمعیت (14). وارد پایه‌برداری عمومی

صفات و ضریب همبستگی زنگی (Broad sense heritability)

برای هر جفت از صفات بر اساس روش ارائه شده توسط

فاکتور محاسبه شد (14). به منظور بررسی تأثیر هر یک از صفات مورد نظر روی متغیر

نایب و همچنین به تعداد داده‌های متغیر‌های مستقل، تجویز

رگرسیون مدل گام به گام (Stepwise regression analysis)

23 متر کشت و تعداد 10 بوته از هر کرت بعد از حذف اثر
کل بهره مورد انتظار از شاخص برای تمامی صفات (Expected genetic advance for all studied traits)

\[\Delta H = K_{th} \sigma_H \]

نتیجه‌گیری: به‌ترتیب واریانس شاخص و همبستگی بین شاخص و ارزش اصلی باعث خواهد شد که در آن عملکرد دانه به عنوان متغیر تابع یا وابسته (Y) و 13.74 صفت مورد مطالعه دیگر به عنوان متغیر مستقل در نظر گرفته شود. در پایان این صفات مورد بررسی، به‌طور کلی، ارزش اصلی و همبستگی بین ارزش‌های عملکرد دانه در تحلیل شاخص‌های انتخاب به کار گرفته شدند. تفاوت‌های ضریب همبستگی بین این صفات و عملکرد دانه به اثر مستقیم و غیرمستقیم جهت تعیین روابط علیه به روش‌های و یا انجام شد (11). از تاکید جزئی علیه برای برآورد ضرایب انتقالی به‌منظور به دست آوردن شاخص‌های انتخاب مناسب جهت بهبود و اصلاح عملکرد انتقاده شد (11). 1. ضریب شاخصی (به رابطه (2) و پرداز انتقالی و فنوتیپی هر صفت می‌باشد.

در این مطالعه از دو روش گزارش‌گر شاخصی (به‌منظور و پایه) استفاده گردید. در شاخص به‌بینه، (Optimum index)

بردار b به رابطه زیر محاسبه شد (32):

\[b = P \cdot \frac{G_a}{G_b} \]

که در آن b به رابطه ضرایب‌شاخصی P (مارترس واریانس-کواریانس)، G (مارترس واریانس-کواریانس فنوتیپی) و \[A \] به رابطه ضرایب‌شاخصی به انتخاب واریانس و ارزش‌های انتخابی صفات می‌باشد. در شاخص به‌بینه، (Optimum index)

\[I = \sum b_i P_i \]

در این بیانی، پرداز انتقالی و مقایسه شاخص‌ها از جهت معیار مختلف استفاده گردید که عبارت بودند از:
میانگین ارزش‌های فوتیبی صفات مورد مطالعه برای والدین، بونتهای F1 و جمعیت F0 در جدول ۱ نشان داده شده است. همان‌گونه که مشاهده می‌شود رتبه‌گیری (والدند) از نظر صفات ارتفاع بونته، طول بره برخی، عضلات اندان پر در خوشه، وزن صد دانه نسبت به رقم IR28 (والد مادری) بنی‌تسبی IR28 داشته و در صفت موارد بررسی، این بونته در رقم IR28 نسبت به رقم بونته ژنی طبیعی شده است.

محاسبه واریانس پردازی صفات برای نسل ۲ F2 داده که صفات وزن صد دانه، عملکرد بیولوژیک و شاخص برداشت نشان داد که صفات وزن صد دانه
جدول 1. میانگین ارزش‌های فوتیتی والدین، بونه‌های ف، جمعیت F، و وراثت پذیری عمومی صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>صفات</th>
<th>وراثت (می‌تر) (m ± S.D.)</th>
<th>IR28 (می‌تر) (m ± S.D.)</th>
<th>F1 (می‌تر ± S.D.)</th>
<th>F2 (می‌تر ± S.D.)</th>
<th>(h2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>165 ± 15</td>
<td>160 ± 20</td>
<td>156 ± 20</td>
<td>153 ± 20</td>
<td>0.98</td>
</tr>
<tr>
<td>FL</td>
<td>21 ± 22</td>
<td>22 ± 22</td>
<td>22 ± 22</td>
<td>21 ± 22</td>
<td>0.97</td>
</tr>
<tr>
<td>FW</td>
<td>17 ± 27</td>
<td>18 ± 23</td>
<td>18 ± 23</td>
<td>18 ± 23</td>
<td>0.95</td>
</tr>
<tr>
<td>PP</td>
<td>15 ± 20</td>
<td>15 ± 20</td>
<td>15 ± 20</td>
<td>15 ± 20</td>
<td>0.99</td>
</tr>
<tr>
<td>MD</td>
<td>14 ± 5</td>
<td>14 ± 5</td>
<td>13 ± 5</td>
<td>13 ± 5</td>
<td>0.95</td>
</tr>
<tr>
<td>GP</td>
<td>15 ± 5</td>
<td>15 ± 5</td>
<td>14 ± 5</td>
<td>14 ± 5</td>
<td>0.95</td>
</tr>
<tr>
<td>SP</td>
<td>16 ± 6</td>
<td>16 ± 6</td>
<td>15 ± 6</td>
<td>15 ± 6</td>
<td>0.95</td>
</tr>
<tr>
<td>GW</td>
<td>2 ± 2</td>
<td>3 ± 2</td>
<td>3 ± 2</td>
<td>3 ± 2</td>
<td>0.99</td>
</tr>
<tr>
<td>CY</td>
<td>19 ± 10</td>
<td>19 ± 10</td>
<td>18 ± 10</td>
<td>18 ± 10</td>
<td>0.85</td>
</tr>
<tr>
<td>BM</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>0.85</td>
</tr>
<tr>
<td>HI</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>1 ± 2</td>
<td>0.85</td>
</tr>
</tbody>
</table>

تغییرات عمومی دانه در برنج به وسیله عمکرد بیولوژیک، شاخه برداری و عرض برک (سانتی‌متر)، FL، عرض برک (سانتی‌متر)، جمعیت F، و همکاران به انتخاب برک عمکرد دانه در برنج نشان داده که تعداد خوشه در برنج و تعداد دانه در خوشه اثر مستقلی بر عملکرد دانه دارند (3). کسانی و همکاران با بررسی گروه عمکرد براساس 3 تکریک تالابی، برنج شاخص یک رقم ایندیکی و سه رقم نیمه پاکشنه در نسل‌های F1 و F2 می‌تواند از آن‌ها به نتیجه‌گیری کاملی پکسیون با تحقیق حاضر دست یافته و اظهار داشته که عمکرد بیولوژیک و شاخه برداری در تمام تفاوت‌های اثر مستقلی می‌تواند با برای برکی عمکرد دانه داشته (16). ساراواتی و همکاران براساس نتایج تجربه علت، انتخاب مستقلی را بر مبنای صفات تعداد دانه پر در خوشه و شاخه برداری، برای افزایش عملکرد دانه می‌تواند داشته باشد (16). پادشاهان و همکاران با مطالعه روی 22 جهانی، گزارش کرده که تعداد خوشه در برنج و وزن صد دانه، عملکرد بیولوژیک و تعداد دانه

دانه در برنج داشته به طوری که اثر غیرمستقلی منفی آن تا حدود زیادی توسط اثر غیرمستقلی می‌یابد و باید شاخص برداری خسته و سبب معنی‌دار نهایی بودن همبستگی زئی‌کی است. تعداد دانه پر در خوشه با عملکرد دانه (0.40) شده است. بنابراین این صفت نیز از اجزای اصلی عملکرد دانه به شمار می‌آید. می‌تواند برای افزایش و اصلاح عملکرد دانه مفید باشد.

البته برک و همکاران همبستگی فوتیتی بین عملکرد دانه و صفات ویژه مهم برنج را با روش تجزیه علت به اثرات مستقلی و غیر مستقلی متفاوت می‌توانند و به این ترتیب ریسیدینک که عملکرد دانه در برنج مقدم تحت تأثیر تعداد دانه در خوشه قرار دارد (2). ثانیا و همکاران نیز با بررسی روابط بین عملکرد و اجزای عملکرد دانه در نسل‌های F1 و F2 حاصل از تسهیل مختلف در برنج نشان داده که تعداد خوشه در برنج و تعداد دانه پر در خوشه به‌طور مستقیم را روی عملکرد دانه دارند (7). در مقابل، کیاندش شاخص بیشتو مشابه با این تحقیق داشته که بیشتر
جدول ۲: میزان آثار مستقیم (به صورت زیر خطدار) و آثار غیرمستقیم متغیرهای علت رده‌بندی دوم و دوم عملکرد دانه در مدل تجزیه علت تأثیر بر اساس ضریب همبستگی زنیکی

<table>
<thead>
<tr>
<th>صفات</th>
<th>آثار مستقیم و غیرمستقیم روی عملکرد دانه (BM)</th>
<th>آثار مستقیم و غیرمستقیم روی شاخه پرداشت (HI)</th>
<th>آثار مستقیم و غیرمستقیم روی تعداد دانه در خوشش (GP)</th>
<th>همبستگی زنیکی تعداد با عملکرد دانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. صفات مورد مطالعه در جدول ۱ معرفی شده‌اند.
اطلاعات حاصل از تمام صفات وارد شده در مدل تجزیه علیت عملکرد دانه به چرخه انتخاب حاصل شد. سودمندی نسبی این شاخص در مقایسه با شاخص های دیگر در هر دو شاخص بهینه (جدول 4) و بهینه (جدول 5) در حد پایین بود که در بین شاخص ها، پیش‌رفتگی زیستی گمی را برای صفت عملکرد دانه نشان داد. این شاخص نیز برای صفت تعداد دانه بر در خوشه، پیش‌رفتگی زیستی زیادی در جهت افزایش آن به دست آمده که از این نظر نامطلوب بود. همچنین در صروت استفاده از این شاخص، به دلیل وارد شدن تمام صفات به چرخه انتخاب، اندازه‌گیری آنها ضروری بود و این امر متغیر سطح زمان و هزینه است که از آن حوادث در ارژش اقتصادی نمی‌یابد.

لذا با مقایسه این دو شاخص می‌توان دریافت که افزایش تعداد صفات در شاخص دیلی بر اثر استفاده مورد نظر نمی‌یابد. بلهکه آنچه در سودمندی نسبی شاخص می‌تواند مؤثر باشد همیت صفات وارد شده به شاخص است. و روال‌پذیری از جمله خصوصیات مهم اصلاحی به شمار می‌آید. و شاخص به دست آمده بر مبنای آن، از دیدگاه اصلاحی ارزش بسیاری داشته و مؤثر خواهد بود. لذا در شاخص سوم ورال‌پذیری صفات به عنوان ارزش اقتصادی در نظر گرفته شد. به این صورت که میزان ورال‌پذیری صفات رده‌ای ارژش حاصل از تجزیه علیت زیستی عملکرد دانه به عنوان ارزش اقتصادی آنها و برای دکتر صفات وارد شده در مدل، ارزش صفر اما برای ارتفاع بونه ارزش اقتصادی/5- در نظر گرفته شد (جدول 3). در این شاخص همین‌طور بین شاخص و ارزش اصلاحی، پیش‌رفتگی زیستی کل و سودمندی نسبی در هر دو روش بهینه (جدول 4) و بهینه (جدول 5) در حد مطلوبی به دست آمده. پیش‌رفتگی زیستی براي تمام صفات و همچنین عملکرد دانه در حد پایین مطلوبی، اما برای تعداد دانه پر در خوشه پیش‌رفتگی زیستی کل و ویژگی‌های بود.

در شاخص دهم، ضرایب اقتصادی بر مبنای همیت صفات رده‌ای و دوم حاصل از تجزیه علیت زیستی عملکرد دانه در نظر گرفته شدند. به این صورت که براي صفات رده‌ای از اهمیت بیشتری در افزایش عملکرد دانه داشتند، ضرپیک و براي صفات رده‌ای ارژش/5- منظور شد. اما با توجه به پیش‌رفتگی زیستی برای دست آمده برای ارتفاع بونه در شاخص قبلی، ارزش اقتصادی/5- در نظر گرفته شد (جدول 3). در این شاخص بسیاری پیش‌رفتگی زیستی کل از طریق وارد کردن
<table>
<thead>
<tr>
<th>شاخص</th>
<th>PH</th>
<th>FL</th>
<th>FW</th>
<th>PP</th>
<th>MD</th>
<th>GP</th>
<th>SP</th>
<th>GW</th>
<th>GY</th>
<th>BM</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>79/86</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4: پروردهای میزان‌ها (k=1/76) در نظر گرفته شده است.

<table>
<thead>
<tr>
<th>شاخص</th>
<th>PH</th>
<th>FL</th>
<th>FW</th>
<th>PP</th>
<th>MD</th>
<th>GP</th>
<th>SP</th>
<th>GW</th>
<th>GY</th>
<th>BM</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79/86</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>79/86</td>
<td></td>
</tr>
</tbody>
</table>

جدول 5: پروردهای میزان‌ها (k=1/76) در نظر گرفته شده است.

1. شاخص‌های فوق بر مبنای ضرایب اتصادی موجود در جدول 3 محاسبه شده‌اند.
جهت اصلاح و بهبود عملکرد بازدهی باید قرار دهم و نظر گرفته شد (جدول 3). در این شاخص، در هر دو روش بهینه (جدول 4) و پایه (جدول 5) بیشترین سودمندی نسبی در مقایسه با دیگر شاخص‌ها به دست آمد و بیشترین تبیر در این عملکرد دانگ داشتند. هم‌چنین پیش‌فرض زنی‌گزینی مورد انتظار با این‌فرم‌ها در حد بیشتر مطلوبی بوده و بر از تعداد دانه‌ی دیگر خونه مانند شاخص‌های دیگر در محتوای انتخاب شاخص جهت اصلاح و افزایش عمکرکرد دانگ پیشنهاد می‌شود.

در شاخص بینچ، اثرات اقتصادی در آزمون تحقیقاتی زندگید که شاخص به بیان اندازه گیری می‌باشد. با توجه به چهار میکرو اقتصادی ارزیابی شده در هر دو روش بهینه (جدول 4) و پایه (جدول 5) این شاخص از نظر درجه دقت شاخص و سودمندی نسبی و همچنین از نظر پیش‌فرض زنی‌گزینی مورد انتظار برای عملکرد دانگ و دیگر صفات مورد بررسی در حد مطلوبی بوده. اما برای ارتقاء پیش‌فرض زنی‌گزینی زندگی‌زدایی در جهت کاهش آن دستگاه آن را از نظر نظر، شاخص مورد نظر را مطلوب می‌نمود.

در کل یا مقایسه شاخص‌های چهارم و سوم به ترتیب می‌توانند به عنوان رتبه‌ی دومی شاخص‌های پایه پایه اوشکی در اصلاح عمکرکرد دانگ معرفی گردند.

برای اصلاح عمکرکرد دانگ به عنوان توصیه می‌گردد. برای اصلاح عمکرکرد دانگ به عنوان توصیه می‌گردد. برای اصلاح عمکرکرد دانگ به عنوان توصیه می‌گردد.
بیانگری

تحقیق حاضر در موسسه تحقیقات بذر کشور (RIII) در رشته انجام شد. در این مطالعه به صورت طبیعی و کلیه همکاران برای اصلاح پدیده‌ای مورد بررسی آن مدلی برای بذر کشور تشریح و قدردانی می‌شود.

منابع مورد استفاده

1. ارزانی، ا. 1386. اصلاح گیاهان زراعی (ترجمه). مرکز نشر دانشگاه صنعتی اصفهان.
2. اله قلی پور، م. هیبتلی و م. یزدی‌پور. 1377. مطالعه همبستگی‌های برخی از صفات مهم زراعی با علل‌های داده‌های طبقه‌بندی در بذر کشور. مجله علمی کشاورزی ایران (3): 46-50.
4. رضایی، غ. 1372. شناسایی انتخاب از صفات سریع روزا در سازمان‌های آماری و اصلاح نیاز‌های ایران. دانشگاه تهران، 17 تا 27 هفتم ماه 1373. صفحه 123-130.
5. تحقیقی، ق. و رضایی، م. و س. م. سید. 1379. تجزیه و تحلیل عملکرد در بذر پروری. مجله علمی کشاورزی ایران (3): 437-446.
6. فولادی، م. و ر. جابز. 1377. استفاده از مارکرهای مولکولی در اصلاح گیاهان. مجموعه مقالات کتابی در منابع کنگره علم زراعت و اصلاح گیاهان. و اصلاح نیاز‌های ایران. دانشگاه کشاورزی، دانشگاه تهران (کریم)، 15 تا 18 ماه 1377.
7. قانعی، س. و. یکانی. غ. 1377. بررسی روابط فیزیکی اجزاء عملکرد و عملکرد در بذر و تغییر وراثت بدیع این صفات. چکیده مقاله پنجمین کنگره علم زراعت و اصلاح نیاز‌های ایران. کریم. 1379.
8. چکانی، غ. 1379. بررسی نتوان زنادی، وراثت بدیع و همبستگی برخی از صفات مهم روزا در ارتباط با عملکرد داده‌های بذر. چکیده مقاله پنجمین کنگره علم زراعت و اصلاح نیاز‌های ایران. پنجم.