اضرائات تقابل باکتری‌های حل کننده فسفات و
شاخ‌های رشد غدبدنی و جذب برخی عنصر غذایی در سویا

چکیده
برخی میکروب‌گانیسم‌های خاک توانایی انحلال فسفات‌های کم محلول را دارند. فسفر نقش مهمی در تغذیه گیاه و تثبیت نیتروژن در گیاهان (Phosphate Solubilizing Bacteria (PSB) و باکتری (Glycin max L. CV. Harcor) در شرایط کریتیک و باکتری (Bradyrhizobium japonicum) گلخانه‌ای مورد مطالعه قرار گرفت. آزمایش گلخانه‌ای به صورت فاکتوریال شش چهار جریان باکتری حل کننده فسفات (بدون باکتری) و (Bradyrhizobium) (M1 (Pseudomonas fluorescens) M2 (Aeromonas hydrophila) M3 (Pseudomonas putida) (بدون باکتری) و باکتری ب) بر روی سطح کودفسفر (سیر 38 و 49) محیط گرم سروی فسفر تریل بر کیلوگرم خاک در چارچوب طرح بلوک‌های کامل تصادفی با 4 تکرار اجرا گردید. موقع برداشت و وزن خشک بیش‌الحوزه، وزن دانه در بوته، تعداد، وزن تر و وزن خشک گره‌های ریشه‌ای و غلظت N و K در بخش‌های گیاه اندازه‌گیری گردید باکتری‌های حل کننده فسفات وزن خشک، درصد فسفر، تاپس، نوترز بیش‌الحوزه، تعداد، وزن تر و وزن خشک گره‌های ریشه‌ای به‌طور معمول و در افزایش دانه. بر تمام شاخ‌های ذکر شده و وزن دانه در بوته تاثیر معنی‌دار و معنی‌دار داشت. اثرات تقابل دو فاکتور فوق بر وزن خشک، درصد فسفر و نوترز بیش‌الحوزه گیاه معنی‌دار شد. افزایش سطح کود فسفر وزن خشک درصد فسفر و وزن دانه در بوته گیاه را به طور معنی‌دار افزایش داد. بیشترین مقدار فسفر در بخش‌های گیاهی در بالاترین سطح کود فسفر (P) وجود داشت و وزن خشک بیش‌الحوزه گیاه در سطح P1 و در حضور باکتری (Pseudomonas putida) نداشت.

واژه‌های کلیدی: باکتری‌های حل کننده فسفات، فسفر، سیلیت، غدبدنی.

مقدمه
به‌طور گسترده‌ای از موجودات مفید خاک به‌طور به‌همپوشانی و معینیت حاصل‌کننده‌ای که نیاز به جذب عنصر غذایی و
تاثیر افزایش گیاه به‌طور گسترده‌ای که دارای اهمیت بی‌معنی‌دار و

1. به ترتیب دانشجوی سایق کارشناسی ارشد و استادیار حاکمیت دانشگاه خاک‌شناسی، دانشگاه کشاورزی، دانشگاه تبریز

53
مواد و روش‌ها

جدازی میکروگرامنیم‌های حل کننده فسفات از خاک برای جداسازی میکروگرامنیم‌های حل کننده فسفات، از خاک اطراف ریشه گیاهان شیمیایی، ترشی، سیب نو، زیره و گوشه فرنگی واقع در استحکام تحقیقات دانشگاه کشاورزی دانشگاه تبریز نمونه‌برداری صورت گرفته و نمونه‌های خاک به روش وقت‌های به دهه آب موقت استریل تا ۱۰ دقیقه شده و (۲۰ و ۳۰) جهت جداسازی میکروگرامنیم‌های حل کننده Pikoskaya درون ظروف تحت مخت کشت استریل در دو گردی بر اساس استفاده گردید (۲۷) با اتصال یک کرون. کلتوری مناسب به اطراف آنها شفاه می‌شود و رنگ به عنوان حل کننده فسفات انتخاب شده (۱۳، ۱۵، ۲۰ و ۲۹) و بدین ترتیب تعادل ۱۸ هفته‌ها حل کننده فسفات به دست آمده.

تعیین پتانسیل انحلال فسفات در چند گیاه

در مخت کشت ترکیب

افزایش تعداد گیاهان بروز در ۱۲ مایلی یک گردی و در دوره ۵۰۰۰ و به مدت ۱۵ دقیقه سنتی‌گردید. با این شرایط، بررسی و اندازه‌گیری مقدار فسفات محلول در مایع ساخت روی و به طریق کارنبرگ (روس و مولت) صورت گرفت (۱۱). با توجه به جدول ۱ مؤت‌ترین جهای یک حل کننده فسفات براساس مقدار فسفات حل شده در واحد حجم و زمان از بیکر نمونه‌ها بوده. همچنین به دلیل تأثیر تا حد جنس و گونه در گروه میکروب‌شناسی دانشگاه پژوهشکا دانشگاه علوم پزشکی تبریز براساس انجام برخی آزمونهای پژوهش‌یابی صورت گرفت. جنس و گونه باکتری‌های شناساره

(Pseudomonas putida و Aeromonas hydrophila)

محصول و قابل جذب این عناصر، کمتر از مقدار لازم برای تأمین رشد مناسب گیاه است. روش مندوان برای مقابله با این کمبود ابستفاده از کودهای شیمیایی است. مصرف به بهای زیدان و بازده کم، احتمال آلودگی های زیست محیطی را هم به دنبال دارد (۱۶). بنابراین ضرورت ارائه خدا می‌کند که راه‌حل‌های بیولوژیک برای رفع این مشکلات مورد توجه قرار گیرند. ابستفاده از میکروگرامنیم‌های خاکی که توانایی انحلال فسفات‌ها و تبدیل آن به فسفر محلول را دارند، یکی از راه‌های مؤثر برای افزایش قابلیت جذب فسفر در خاک‌های قلبی است (۲ و ۷). فسفر بعد از نیتروژن مهم‌ترین عنصر اصلی مورد نیاز گیاهان و میکروگرامنیم‌ها بوده و از نظر شیمیایی بسیار فعال می‌باشند. این مسئله در تحقیقاتی که تولید و انتقال تری کشیده است (۲۱) میکروگرامنیم‌های حل کننده فسفات موجود در خاک ضمن اینکه می‌توانند مصرف کودهای شیمیایی حاوی فسفات را کاهش دهند، باعث افزایش جذب فسفر در گیاهان می‌شود (۲۲). تحقیقات انجام یافته در مورد اثرات مختلف بر حل کننده فسفات و باکتری (Bradyrhizobium japonicum) بین انتهای به عنوان مشابه روزان و همکاران (۲۲) در آزمایش مزه‌های بر روی سویا، اثرات متفاوت بین (Bradyrhizobium تیا) و باکتری حل کننده (Pseudomonas putida) فسفات (۲۳) مورد بررسی قرار داده است. در کشور هند، تاکنون باکتری حل کننده فسفات (Pseudomonas استریاتا) بر هم‌پیوسته (Bradyrhizobium) با سویا و عملکرد آن مورد بررسی قرار گرفته است (۲۳). با توجه به اهمیت موضوع، به نظر می‌رسد ساختاری این میکروگرامنیسم‌ها و به کارگیری آنها در تأمین فسفر گیاهان، از منابع نامحلول در خاک کاملاً ضروری است. کارایی هم‌پیوسته سویا با (Bradyrhizobium japonicum) از نظر تثبیت نیتروژن و جذب برخی عناصر می‌تواند تأثیرات کافی فسفر می‌باشد. در این تحقیق تأثیر برخی گونه‌های باکتری‌ای حل کننده فسفات در تأمین فسفر و بهبود هم‌پیوسته فوقال مورد بررسی قرار گرفت.
تیه مایه تلفیق میکروبی از جدایی‌های مؤثر
جهت تیه مایه تلفیق از جدایی‌های باکتری، ابتدا آنها در محفظه
کشت مایه Pikoskaya به مدت 48 ساعت در دمای 28 درجه
سانتی‌گراد و داخل چیپک اکوپانیک تکثیر شدند و سپس تعداد
باکتری در واحد حجم سوپرسایسونیا به روش کدکریت سنجی
با اندازه‌گیری OD 600 نانومتر تعیین شد (10). سپس 12
میلی‌لیتر از سوپرسایسونیا در زیر هود روی حامل میکروبی
(مخلوط پیت و ورم کولیت آسیاب شده به نسبت
(Carrier)
1 : 1 وزنی که از گریال 100 میکرویونی عبور داده شده است،
شده بودند. منقل سندن و حامل‌های تلفیق نهایت
و سازگاری باکتریها با محفظه جدید به مدت 30 دقیقه در
انکوپانیک 24 درجه سانتی‌گراد تهیه شدند،
عصاره pH اشعاع حامل میکروبی 7/6/8، هفتاد یکی از آن 50 دست
زیمین بر متر و رطوبت اشباع آزمایشی 159 درصد تعیین شد،
براساس عامل شاخص باکتری موجود در سوپرسایسونیا و حجم
افزوده شده به حامل، در نهایت به ایزه هر گرم ماده حامل
خشک تعداد 105 x 30 باکتری وجود داشت.

انتخاب و آماده‌سازی خاک
خاک مورد استفاده جهت آزمایش تلفیق نهایت از اراضی دانشکده
کشاورزی واقع در کرک گزارش شده. خصوصیات فیزیکی و
شبیه‌سازی آن در جدول 2 مذکور است. (1) مقدار 500 گیلگرم از
خاک از عمق 50-100 سانتی‌متر برداشت شده و پس از گذارشاند
از گریال 2 میلی متر عمل پاسیوریزه کردن در بخار آب 100 درجه
سانتی‌گراد به مدت 48 ساعت انجام شد. خاک پاسیوریزه شده به
گلدن‌های پلاسکوتیک 4 گیلگرم بکا کیل اکلیت 50 دست
ضعف‌پذیر شده بودند، منتقل گردیدن. براساس میزان ضعف قابل
جدب در خاک مورد آزمایش و توصیه کودی مربوط به سویا
تیمارهای کودی ضعف‌پذیر به خاک گلدن‌ها عمل شدند (3).

اذعان و طرح آزمایش
این آزمایش در قالب طرح بلکوهی که شامل تشیفی و به

برداشت گیاه و اندازه‌گیری شاخص‌های مورد نظر
گیاهان پس از گذشته حدود 15 هفته و در حالتی که به‌هم‌اکار
دارای غلاف پودن، برداشت گردیدند. اندام هموگلین گیاهان از

55
جدول 1. میانگین انحلال فسفات در محیط کشت مایع توسط جدایی‌های مختلف (آزمون LSD)

<table>
<thead>
<tr>
<th>طبقه‌بندی</th>
<th>کلسیم بافت‌خاک</th>
<th>میلی‌گرم بر کیلوگرم</th>
<th>کربن آلی</th>
<th>ECE</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>54</td>
<td>34</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>56</td>
<td>35</td>
<td>1/2</td>
<td>3/2</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>58</td>
<td>33</td>
<td>1/8</td>
<td>3/4</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>62</td>
<td>36</td>
<td>1/4</td>
<td>3/8</td>
</tr>
</tbody>
</table>

LSD: میانگین‌های با حروف غیر مشابه در سطح احتمال 0/05 اختلاف معنی‌دار دارند.

ملاحظه: جدایی‌های شماره 11، 12 با توجه به بالاترین پتانسیل انحلال فسفات برای سایری انتخاب شدند.

جدول 2. نتایج تجزیه فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>FC (W/W, %)</th>
<th>کلسیم بافت‌خاک</th>
<th>میلی‌گرم بر کیلوگرم</th>
<th>کربن آلی</th>
<th>ECE</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>34</td>
<td>1</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(pH 8/5 مولار و P از تأثیر آمونیوم و pH 7 مولار و K از روش DTPA روزن، Zn، Cu، Mn، Fe)
شکل 1 اثر باکتری‌های حل کننده فسفات و (Bradyrhizobium) بر وزن خشک بخش هوایی گیاه بر حسب گرم در بوته (آزمون توکی)

سطح خاک قطع شد و بعد از دوباره شستشوی با آب فلور در دماهای 70 درجه سانتی‌گراد، نتیجه نشان دادند. وزن نمونهها خشک شدند. پس از تعیین وزن خشک گیاه، به آب گرم نمونه گیاهی در درجه سانتی‌گراد 55 درجه سانتی‌گراد خاکستر و میس در 10 میلی لیتر اسیدکریتیک یک مولار حل گردید. محلول آن کاغذ صافی عنبر داده و بعد از شستشوی موارد باقی مانده بر کاغذ صافی با آب مقطع، حجم محلول به 50 میلی لیتر رسانده شد. فسفر با روش بنچسنجی (موادت- مولیبدات) و با استفاده از دستگاه اسپرینفومتر و پن송س با فلیم فاوتم‌نگردی تیمیاهت. فشار نیتروزول کن نیز با روش جدولی اندوزی گردید. (11) میکرواریناژی گیاهانی که درایی عامل (Bradyrhizobium) بوته‌ها به دقت از داخل گلنای برخورد آورده و تعداد به‌طور بعد از شستشوی با آب مقطع شمرده شد. سپس مقدار به‌طور از ریشه جدا شده و وزن نیز تعیین گردید. بعد از شستشو در دمای 70 درجه سانتی‌گراد به مدت 28 ساعت فرار داده و وزن خشک گیاهانی که مورد حضور MSTATC صورت گرفت.

نتایج و بحث

وزن خشک بخش هوایی گیاه

طبق شکل 1 تیماری که توانست باکتری (Bradyrhizobium) و (Pseudomonas putida) آثار مقابل بین باکتری‌های همبستگی سوسیا و را که حل کننده فسفات بود، مورد بررسی قرار دادند. گزارش کرونید که نتیجه نشان می‌گردید این باکتری از باکتری‌های همبستگی می‌باشد. یکی از روند از وزن خشک گیاه به وجود می‌آورد و می‌تواند و...
جدول ۳. میانگین اثرات سطح باکتری حل کننده و سطح کود فسفر بر روی صفات مورد مطالعه در سویا (آزمون توكی)

<table>
<thead>
<tr>
<th>صفات مورد مطالعه</th>
<th>باکتری حل کننده فسفر</th>
<th>سطح کود فسفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>2</sub></td>
<td>P<sub>1</sub></td>
<td>P<sub>0</sub></td>
</tr>
<tr>
<td>M<sub>1</sub></td>
<td>M<sub>2</sub></td>
<td>M<sub>0</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>وزن خشک بخش هوایی (گرم در هر بوته)</th>
<th>0/۸۷۴<sup>a</sup></th>
<th>۳/۳۹۹<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

میانگینی با حروف غربی مشابه در هر سطر از نظر آماری در سطح احتمال ۰/۰۵ اختلاف معنادار دارد.

 فقط میانگین صفاتی در جدول اثری نشده که تجزیه واریانس آنها معنادار نبود. میانگین‌های با حروف های مشابه در هر سطر از نظر آماری در سطح احتمال ۰/۰۵ اختلاف معنادار دارند.

همکاران (۳۶) در بررسی تأثیر باکتری حل‌کننده, فسفر (P₂) بر روی انگلیسی (Pseudomonas striata) با سویا و صفاتی مانند (Bradyrhizobium japonicum) گفته‌ای، وزن خشک گرده و وزن خشک گیاه ناشان داده‌اند که تلقیح توام دو باکتری سبب افزایش معناداری در صفات ذکر شده می‌گردد. درلی و همکاران (۱۲) نیز نشان دادند که تلقیح (Pseudomonas fluorescens) توان بذرهای نخود با ریزوبیوم، که با افزایش ارتفاع، طول ریشه و وزن خشک گیاه روبرو می‌شود.

میانگین سطح کود فسفر در جدول ۳ یک پایان این است که با افزایش سطح کود کود تولید ماده خشک افزایش می‌یابد ولی افزایش سطح کود کود ایجاد کرده و اکتشاف معناداری با تیمار شاده (بدون سطح کود) صفاتی و بدون (Bradyrhizobium) و سایر تیم‌های در سطح احتمال پنجم درصد داشت. به نظر می‌رسد که افزایش تثبیت نیتروژن در

پنجم درصد‌اش داشت. به نظر می‌رسد که افزایش تثبیت

www.SID.ir
تفاوت معنی‌داری از نظر چند جذب فسفر با یکدیگر نداشتند. با وجود این، تیمار M_{3}\text{P}_{0}، M_{2}\text{P}_{1} و M_{1}\text{P}_{2} هم‌زیست مربوط به خصوصیات PSB در PGPR باعث افزایش رشد گیاه شده است. نتایج آزمایش‌های چاپوت و همکاران (3) حاکی از آن است که PGPR (Bradyrhizobium) بر تاثیر تیروزون می‌توانند به عنوان PGPR تلقی شود و قادر به احیای فساته آلی و معدنی باشند. میکروگانیسم‌های حلال کندته فساته نیز با احیای فساته، مقاودر زیادی فسفر محلول در احیای گیاه قرار می‌دهند و جوان گیاه رشد خوب و سیستم گرده‌های ریشه‌ای گسترش پایین دارد مقدار بیشتر از فسفر محلول را جذب می‌کند. در واقع بین میکروگانیسم‌های حلال کندته فساته و PGPR اثر مثبت و معنی‌دار وجود دارد.

آزمایش مشخص شده است که تلخیق توبام روی ویوم، فارج میکروژی و ریزوپاتری، حلال کندته فساته در ریو فسفر بهبودی تیمار باعث گسترش جذب در ژست و تیروزون در این گیاه می‌شود (28). شکل 3 نشان می‌دهد که بیشترین رشد در حلال سوم کود فسفر، (P) مربوط (Pseudomonas putida) است و تیمار شاهد (بدون حلال کندته فساته و بیرون کود فسفر) کمترین رشد در این حالت نشان داده که تیمارها که فاقد باکتری حلال کندته فساته بودند.

59
نمونه‌ای از تیمارهای دارای برگهای ریشه‌ای (Bradyrhizobium) که با سوپر فسفات نیتریژن کوده شده‌اند، فیزیولوژی آنها نشان دهنده می‌باشد. گروه‌ها می‌توانند به رابطه سیستمیکی بین آنها مربوط داشته باشند. در تحقیقاتی که تورو و همکاران (18) انجام دادند، مشخص شد که سبک‌های مختلف دیتیوم و ریزیکاتریکسی هال کننده فسفات و فارق میکوریک در ریزو فیزیولوژی باعث افزایش می‌شود. (Bradyrhizobium)

نمونه‌ی این فیزیولوژی نشان می‌دهد که با توجه به شکل 4 تیمارهای دارای برگهای ریشه‌ای (Bradyrhizobium) که با سوپر فسفات نیتریژن کوده شده‌اند، فیزیولوژی آنها نشان دهنده می‌باشد. گروه‌ها می‌توانند به رابطه سیستمیکی بین آنها مربوط داشته باشند. در تحقیقاتی که تورو و همکاران (18) انجام دادند، مشخص شد که سبک‌های مختلف دیتیوم و ریزیکاتریکسی هال کننده فسفات و فارق میکوریک در ریزو فیزیولوژی باعث افزایش می‌شود. (Bradyrhizobium)

گردهایی که توسط سوپر فسفات نیتریژن کوده شده‌اند، فیزیولوژی آنها نشان دهنده می‌باشد. گروه‌ها می‌توانند به رابطه سیستمیکی بین آنها مربوط داشته باشند. در تحقیقاتی که تورو و همکاران (18) انجام دادند، مشخص شد که سبک‌های مختلف دیتیوم و ریزیکاتریکسی هال کننده فسفات و فارق میکوریک در ریزو فیزیولوژی باعث افزایش می‌شود. (Bradyrhizobium)

اثر برگهای ریشه‌ای (Bradyrhizobium) که با سوپر فسفات نیتریژن کوده شده‌اند، فیزیولوژی آنها نشان دهنده می‌باشد. گروه‌ها می‌توانند به رابطه سیستمیکی بین آنها مربوط داشته باشند. در تحقیقاتی که تورو و همکاران (18) انجام دادند، مشخص شد که سبک‌های مختلف دیتیوم و ریزیکاتریکسی هال کننده فسفات و فارق میکوریک در ریزو فیزیولوژی باعث افزایش می‌شود. (Bradyrhizobium)
آنگون و همکاران (6) گزارش کرده که باکتری‌های حل کننده فسفات می‌توانند با استفاده از اکسیداسیون اگری بنی در بستر هورمون‌های گیاهی اکسیداسیون رشد کاهشی محقق که الکولولی‌های رشد گیاهی را تحت تأثیر قرار داده و رشد حجم یشتری از خاک را اشغال می‌کند و سطح جذب افزایش می‌یابد. در اکثر تحقیقات انجام‌شده، تولید اسید از جمله مکانیسم‌های عمدی احلال فسفات توسط میکروب‌گیاهی‌ها ذکر شده است (2، 4، 8 و 14). میکروب‌گیاهی‌های حل کننده فسفات همچنین می‌توانند با تولید کالس و تشکیل پیوندی با کانی‌های فلزی، غلظت فلزات را کاهش داده و سبب رهازاسی آنها از کانی‌ها شوند (2).

از نظر آماری بین تیمار شاهد و دو باکتری حل کننده فسفات، تفاوت معنی‌داری وجود نداشت و لی در این درصد، غلظت پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.

از نظر آماری بین تیمار شاهد و دو باکتری حل کننده فسفات تعیین شده که سطح پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.

از نظر آماری بین تیمار شاهد و دو باکتری حل کننده فسفات تعیین شده که سطح پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.

ب) برای بیانگرین سطح کود که باکتری‌های حل کننده فسفات دیگر تعیین شده که سطح پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.

ب) برای بیانگرین سطح کود که باکتری‌های حل کننده فسفات تعیین شده که سطح پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.

ب) برای بیانگرین سطح کود که باکتری‌های حل کننده فسفات تعیین شده که سطح پتاسیم در تیمار شاهد (بدون حل کننده فسفات) اتفاق افتاد. تفاوت معنی‌داری در این نتایج حاصل از تأثیر مثبت حل کننده فسفات بر جذب پتاسیم می‌باشد. از جمله مکانیسم‌های احتمالی می‌توان به مورد اشاره کرد: 1- با تولید PGPR گیاهی سبب توسه سیستم ریشه و افزایش سطح جذب می‌شوند. 2- با تولید پروتوکین و سایر لیبراتورها احتمالاً در راه‌هایی از این کانی‌ها می‌باشد.
در حالاتی که می‌توان کفت که استفاده از باکتری‌های حل کننده فسفات بر روی اغذی صفات تأثیر معنی‌داری داشته و باعث افزایش عملکرد گیاهان است. اثر تلقیح باکتری‌های حل کننده فسفات در مقایسه با تیمارهای کود

(Pseudomonas putida) فسفره‌های از برتری تیمار PSB (به ویژه در میزان تولید ماده خشک گیاهی در سطح پیکان) در فسفر بوده است. برای این که نتایج آزمایش‌گذارانی را به شرایط طبیعی تعیین داد، باید با استفاده از باکتری‌های مؤثر به شرایط مورد بررسی قرار گیرد و تا به اثر معقید باکتری‌های حل کننده فسفات بر شرایطی در سطح پیکان به خوبی می‌توان با کارگیری این باکتری‌ها به صورت کودهای میکروبی در سطح ویژه، از مصرف کودهای فسفات

(Pseudomonas putida) مورد وزن خشک گره اگر چه تیمار از لحاظ آماری تفاوت معنی‌داری با دو باکتری حل کننده فسفات دیگر و تیمار شاهد (M0) نداشت ولی دارای بیشترین وزن خشک گره بود. از آنجا که باکتری‌های حل کننده فسفات بر شرایطی مورد بررسی قرار گرفت که باکتری‌های حل کننده فسفات بر گردویی غیر از مکانیسم انحلال فسفر است و مکانیسم‌های دیگری مطرح گردیده‌اند. وسیله و همکاران (20) در تحقیقاتی که روی سویا انجام دادند، متوجه شدند که تلقیح باکتری حل کننده فسفات به نام پرزوده‌بند باکتری (Pseudomonas striata) در روز و زن خشک گره‌ها در اثر

(Bradyrhizobium) داد و روزها و همکاران (22) آزمایش‌های مورد بررسی قرار گرفت که باکتری‌های حل کننده

(Bradyrhizobium) هم‌زیست سویا پرزوده‌بند باکتری (Pseudomonas putida) فسفات به نام مورد بررسی قرار گرفت. معقید باکتری‌های کردن که هگه‌گاه تلقیح توان این در

(Bradyrhizobium) باکتری، افزایش معنی‌داری در گردویی ریشه‌ها مشاهده می‌شود. مولوی و همکاران (17) تحقیق قابل ملاحظه شده و

متای مورد استفاده

1. علی احیایی، م. ع. 1379. جهت‌های تجربه شیمیایی خاک. جهان، اول. وارد کشاورزی. سازمان تحقیقات آموزش و تغییر کشاورزی، موسسه تحقیقات خاک و آب، مشهد. شماره ۸۹۳
2. علی اصغرزاده، ن. 1379. میکرو‌پایلوژی و بیولوژی خاک (درجه). جهان، اول. اکتشافات دانشگاه برتری کشاورزی.
3. کاظمی، م. 1377. چگونگی استفاده از کودهای شیمیایی (سفره، نانو) و آنتی در افزایش نوع و شاخص علایی سیاست
4. Gazzari, K.A. pour صرف سلم و صرف بهینه کودهای شیمیایی، مشهد. شماره ۱۰.

