شکل‌های مختلف سرب، نیکل و کادمیم در یک خاک آهکی تیمار شده با لجن فاضلاب

اسامعیل خدیوی بروجی، فرشید نوربخش، مجید افکنی و حسین شریعتمداری

چکیده
کاربرد لجن فاضلاب در کشاورزی اخیراً به عنوان مهم جهت تأمین نیاز غذایی محصولات زراعی مورد توجه قرار گرفته است. از طرف دیگر وجود عناصر سمل مثل سرب، تیتان و کادمیم در این کود ممکن است تاثیرات اراضی تیمار شده را مضر بسازد. عصاره‌گیری دینامیک عناصر سنگین می‌تواند به پی بردن قابلیت جذب عناصر مذکور توسط گیاه کمک کند. هدف از این تحقیق بررسی تجمع باقیمانده لجن فاضلاب بر شکل‌های شیمیایی و فاکتور هرکار سرب، نیکل و کادمیم در خاک است. این مطالعه که به صورت طرح کرت خرد شده به سه تکرار صورت گرفت. میزان مختلف کوده‌ی لجن فاضلاب شام 0، 15 و 100 مگا گرم بر هکتار به عنوان کرت‌های اصلی و سالهای متوالی کوده‌ی شام 1 و 3 سال کوده‌ی به عنوان کرت فرعی در نظر گرفته شد. در سال سوم از عملیات سه متری تولید کرت‌ها انجام شد. در میانه‌های مختلف عناصر سرب، نیکل و کادمیم (SOL) اندازه‌گیری شد. نتایج نشان داد با افزایش مقدار و دفعات کوده‌ی با لجن فاضلاب غلظت عناصر کادمیم و نیکل در فرم محلول (ORG) افزایش و در مورد سرب کاهش پایت. قابلیت (CAR) و آنی (RES) عناصر افزایش یافته، قربانی افزایش (OCC) که سرب و نیکل کاهش و کادمیم افزایش یافته، قربانی افزایش (RES) که سرب، نیکل و کادمیم کاهش یافته، قابلیت جذب این عناصر افزایش یافته، قربانی افزایش (RES) و نیکل، کادمیم و سرب افزایش یافته. Cd>Pb>Ni

واژه‌های کلیدی: عصاره‌گیری دینامیک، کود آنی، لجن فاضلاب، سرب، نیکل، کادمیم

فیزیکی، شیمیایی و بیولوژیکی خاک دانل، یکی از روش‌های مهم افزایش باروری خاک شامل پرورشند و این در حالی است که بی‌توجهی به انرژی بی‌پایه‌ی که بر خصوصیات افزودنی‌های آنی به علت آثار بهبود یکی از روش‌های مهم افزایش باروری خاک شامل پرورشند و این در حالی است که بی‌توجهی به انرژی بی‌پایه‌ی که بر خصوصیات

مقدمه

از دسته‌های آنی به علت آثار بهبود یکی از روش‌های مهم افزایش باروری خاک شامل پرورشند و این در حالی است که بی‌توجهی به انرژی بی‌پایه‌ی که بر خصوصیات

www.SID.ir
مواد و روش‌ها

خصوصیات اقلیمی و خاک محل آزمایش
این پژوهش در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه صنعتی اصفهان (لوزو، گوجه‌آباد آبادان مهمل) انجام شد. خاک محل تحقیق از گروه گلیس‌های کوهی از گروه گلیس‌های کوهی می‌باشد که در نتیجه آن، فلزات سنگین با واکنش دادن به مواد مختلف موجود در خاک به صورت‌های منحل و تبادلی کربناتی حیاتی شده و به‌طور گسترده (Occluded) آلی و باریک مانده در می‌آیند. کربن و همکاران (17) گزارش کرده‌اند که بعد از ۱۵ سال کاربرد مداوم لجن فلزات، مدل قابل جذب فلزات سنگین افزایش یافته است. این پژوهش گران دلیل این مسائل را کاهش pH بر اثر مصرف Zn کمک‌کننده فلزات کربن‌ها (9) گزارش کرده‌اند که افزودن مواد آلی باعث افزایش قابلیت احراز و Cd با سیستم اکسیژن اکسیداسیون نهایی می‌گردد Cd محاسبه مقدار ثابت نشکل نشان می‌دهد که پایداری کمیکس‌های فلز – مواد آلی با Cd و Zn ممکن است بی‌سئار مهارت از افزایش کربن‌ها این و افزایش افزایش ظرفیت و سرعت آبشویی آنها را بیش از آب‌های زیرزمینی افزایش دهد. محققین نشان دادند روش عصاره‌گیری دنبال‌های می‌تواند هم‌رسکی بین مقدار عصاره (Sequential extraction) کمک‌شده فلزات سنگین و جذب گیاه و مقدار رشد را پیش‌بینی کند (بیش‌تر).
شاخصه‌های مختلف سرب، نیکل و کادمیوم در یک‌خاک آهکی تیمار شده با لجن فاضلاب

نتایج و بحث

غلظت کل فلزات سرب، نیکل و کادمیوم در لجن فاضلاب مورد استفاده در این آزمایش به ترتیب ۱۳۲، ۵۵ و ۳۵ میلی‌گرم بر کیلوگرم بود. این لجن به ترتیب دارای pH ۴/۸ و EC ۱۹/۰۵ کربن آلی و نیتریژن کل بود. مقادیر pH و pH در آب به ترتیب ۴/۹ و ۹/۴ بودند.

اثر کاربرد لجن فاضلاب بر خصوصیات خاک

pH (الف)

اگرچه تأثیر کاربرد لجن فاضلاب بر pH خاک‌ها معنی‌دار نشد، این عامل در رونده کاهشی pH با افزایش سطوح و دغدغه قابل رویت است (جدول ۱). این کاهش غیر معنی‌دار را می‌توان به اسید لجن فاضلاب (pH=۳/۰) نسبت داد. لیکن از آن‌جا که خاک‌های آهکی دارای ظرفیت باریک از یک‌داید می‌باشند، افزودن لجن فاضلاب اثر معنی‌دار بر pH ندارد (۲ و ۳).

ب) قابلیت هدایت الکتریکی

با عفونت از جو در مورد pH خاک‌ها، به عنوان گردید. بهینه‌ترین مقدار (ECe) معمولاً در مراحل ملاحظه شد (جدول ۱). در هر یک از سطوح ۵، ۱۵ و ۵۰ میکرومگرم به‌هکمیار با افزایش دفعات کوده‌های افزایش معنی‌دار یافت. به طوری که بهترین مقدار در ترمالیت یافته گردید که سه بار بیش از مطلق ۱۰۰ میکرومگرم به‌هکمیار در لجن فاضلاب مورد برداشت بود. مقدار ECe در این ترمالیت (۱/۶) تقریباً به ۳ پرایز بنا شده (۱/۲) در افزایش یافته. از آنجا که خود لجن فاضلاب دارای حداکثر pH خاک‌های تیمار شده با لجن فاضلاب را موثر تا اصلاح موجود در لجن نسبت داد. از سوی دیگر به دلیل آن که این لجن‌ها تحت آب‌شار بوده‌اند، تیمارهایی که در سال ۸۰ و ۸۱ به‌طور فرعی سوم با لجن فاضلاب تیمار شده‌اند فرصت کمتری برای آبشوری داخلی لذا در مقایسه با تیمارهایی که در سال‌های گذشته لجن فاضلاب دریافت کردند، بیشتری دارند.

عصاره‌گیری دنباله‌ای فلزات سگین از خاک

برای تعیین شکل‌های مختلف شیمیایی فلزات نمونه‌های خاک به‌صورت دنباله‌ای به مخلوط عصاره‌گیری مختلف تیمار شده (۱۶) و در هر مرحله فلز عصاره‌گیری شده جمع آوری و با استفاده از‌بند برکنی المرمر (۳۳ تا ۶۳ میکرون) اندازه‌گیری شد (۱۱). برای عصاره‌گیری شکل محلول در آب (SOL) مقدار تبدیل (CAR) کربناتی (ECe) با استفاده از نمونه pH=۶ و استاتی آمونیوم (pH=۷) و استاتی (CAR) (pH=۸) عصاره‌گیری گردید. شکل مجتمع با حبیش شده (SOL) فلزات فوق به هیدروکسی کربنیل کلین و شکل آلی (ORG) فلزات فوق به جمع آوری و با استفاده از‌بند برکنی مرمر (۳۳ تا ۶۳ میکرون) اندازه‌گیری شد. باید توجه داشت که بهترین مواد عصاره‌گیری شد. عصاره‌گیری کرت در سه روش تلاشی خاک‌های دنباله‌ای، غلظت کل فلزات فوق از هضم‌های به‌صورت HCl+HNO3 با تعیین با مجموع نتایج مراحل فوق مقایسه گردید (۲۵). علاوه بر شکل‌های فوق، غلظت کل جذب فلزات با استفاده از عصاره‌گیری (۱۰) فلاتس سگین اندازه‌گیری شده با تعیین فاکتور (Mobility factor) می‌باشد. مجموع شکل‌های با CAR و EXC مقدار کل CAR و EXC SOL می‌باشد که شکل‌های فلزات به‌صورت محسوب گردید (۱۶). تعیین واریانس داده‌ها، مقایسه مناسب‌گذاری (داکتیل ۵) با استفاده از نرم‌افزار SAS صورت گرفت.
جدول 1: خصوصیات خاک پس از کاربرد لجن فاضلاب در مقایسه با شاهد و کود شیمیایی

<table>
<thead>
<tr>
<th>pH</th>
<th>ECe(dS/m)</th>
<th>تیمار 1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/3</td>
<td>0/35</td>
<td>100</td>
</tr>
<tr>
<td>8/4</td>
<td>0/25</td>
<td>75</td>
</tr>
<tr>
<td>8/5</td>
<td>0/55</td>
<td>50</td>
</tr>
<tr>
<td>8/6</td>
<td>0/75</td>
<td>25</td>
</tr>
<tr>
<td>8/7</td>
<td>0/95</td>
<td>25</td>
</tr>
<tr>
<td>8/8</td>
<td>0/10</td>
<td>25</td>
</tr>
</tbody>
</table>

1. واحد وزنی تیمارهای کود آلی مگا گرم بر هکتار و کود شیمیایی در هر سال 250 کیلوگرم اوره و 250 کیلوگرم فسفات آمونیوم بر هکتار می‌باشد.

ج) درصد کرین آلی

با کاربرد لجن فاضلاب، درصد کرین آلی افزایش یافته است و تفاوت معنی‌داری با شاهد و کود شیمیایی مشاهده می‌شود (جدول 1). سبب افزایش درصد کرین آلی با بودن میزان مواد آلی لجن فاضلاب می‌باشد. بنابراین، درصد آلی خاک به نسبت مقدار لجن کرده‌های افزایش یافته است. به طوری که حتی بین تیمارهای کود فری و کرده فری که سال بالای 45 بیش از تیمار برابری تنها یک بار کود دریافت کرده به تفاوت آنها نیز اختلاف معنی‌داری وجود دارد. با عللی بر اینکه از کرده‌های مکا مگا لجن فاضلاب دریافت کرده است، با یک بار بیشترین غلظت ترکیب محلول سرب از بین تیمارهای کود آلی ناشان داد. سایر تیمارهای با تیمار شاهد اختلاف معنی‌داری نشان ندادند. نتایج به دست آمده نشان می‌دهد که سرب محلول مقدار ناجیزی را در خاک‌های تیمار شده دارا می‌باشد. محققان

100 مکاگرم لجن دریافت کرده است (93/5 در مقایل 2/67 درصد) این وضعیت نظیر آن به طور مشابه برای سایر تیمارهای اصلی و 50 مگا گرم بر هکتار نیز وجود دارد (جدول 1).

اثر لجن فاضلاب بر شکل‌های شیمیایی سرب خاک

1. شکل محلول (SOL)

همانطور که در جدول 2 نشان داده شده است بین مقادیر محلول فلز سرب در بین تیمارهای کودی اختلاف معنی‌دار وجود دارد. به گونه‌ای که تیمارهای که سبب بار متوالی 100 مکاگرم لجن فاضلاب دریافت کرده است با یک بیشترین غلظت شکل محلول سرب را در بین تیمارهای کود آلی نشان داد. سایر تیمارهای با تیمار شاهد اختلاف معنی‌داری نشان ندادند. نتایج به دست آمده نشان می‌دهد که سرب محلول مقدار ناجیزی را در خاک‌های تیمار شده دارا می‌باشد. محققان
جدول ۲. شکل‌های مختلف سرب تیمار شده با لجن فاصلاب در مقایسه با شاهد و کود شیمیایی (mg kg⁻¹)

<table>
<thead>
<tr>
<th>(SOL) محلول</th>
<th>(EXC) تبادل</th>
<th>(CAR) کربنات</th>
<th>(OCC) حساس شده</th>
<th>(ORG) آلی باتیک</th>
<th>(RES) قابل جذب</th>
<th>پارامتر</th>
<th>تیمار ۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵ac</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵abc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
<tr>
<td>N.D</td>
<td>۱/۵bc</td>
<td>۸/۵ab</td>
<td>۷/۹ab</td>
<td>۹/۴abc</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
<td>۲/۵abcd</td>
</tr>
</tbody>
</table>
بیشینه‌تری برخورد این است، به طوری که حتی در کرت اصلی
25 مگا گرم هکتار، افزایش دفعات کوددهی باعث افزایش
تدریجی سرب آلی (8/8000 برای
875/25 برای
15/15 و 10/15 برای
250+125+125 ماه‌های گردیده که به
طور قابل توجهی کوککچتر از سایر تیمارها می‌باشد. ممکن است عمل این کاهش ناشی از انتقال سرب موجود در فرم
حس شده به فرم آلی سرب باشد لیکن برای اثبات این فرضیه
بررسی های پیش‌تری لازم است.

(OC) 4
 Skipping
レベル
بله

(ORG) 5

5. شکل آلی سرب

تغییرات مقداری شکل آلی سرب در تیمارهای هر مقدار مطلوعه بسیار
جدول 6. نسخه اتی که می‌تواند
شکل‌های آلی سرب تا گاهی بر جای ماند در تیمارهای
در آن که تیمار کود
تغییرات قابل توجهی به وقوع بیشترین است، با گونه‌ای که:
در کرت اصلی 25 مگا گرم بر هکتار که علائم جائیه سرب
فرعی 0.5-0.25, 0.25-0.5. است، هیچ یک از کرت‌ها در
مقایسه با به ره و کود شیمیایی فاوتی ماند و در
مقداری که به راه انداخت
می‌باشد (جدول 2)

6. شکل مافیا مانده

سرب باقی مانده در سطح و دفعات مختلف تیمار لجن فاضلاب
نیز در مقایسه با به ره و کود شیمیایی اختلاف معنی‌داری ندارد.
ندا و بیشترین مقدار مربوط به تیمار 50 مگا گرم بر هکتار سرهای
بار کوددهی با متوسط
17/58 mg kg⁻¹ می‌باشد (جدول 3)

7. سرب کل

اختلاف میزان سرب کل با کاربرد مقادیر 50 و 100 مگا گرم
در تیمار سه بار کوددهی شده در مقایسه با شاهد و کود
شیمیایی معنی‌دار شد و تیمار 100 مگا گرم بر هکتار با سه
متوالی کوددهی میانگین
6.54 بالاترین مقدار سرب کل
را نشان داد (جدول 2)

8. سرب قابل عصاره‌گیری (DTPA) (قابل جذب)

سرب قابل جذب (قابل عصاره‌گیری با
DTPA) با کاربرد
مقدار مختلف لجن فاضلاب در مقایسه با شاهد و کود
شیمیایی معنی‌دار شد و تیمار 100 100 100 مگا گرم بر
هکتار با
5.89 mg kg⁻¹ بالاترین مقدار را دارا بود (جدول 2)
بنابراین کاربرد لجن فاضلاب به دلیل دارا بودن مقدار

(P)
جدول 3- شامل‌های مختلف تیمار شده با لجن فاضلاب در مقایسه با شاهد و کود شیمیایی (mg kg⁻¹)

<table>
<thead>
<tr>
<th>محلول (SOL)</th>
<th>تیمار (EXC)</th>
<th>تبادلی (CAR)</th>
<th>حس (OCC)</th>
<th>آلی (ORG)</th>
<th>باقی مانده (RES)</th>
<th>قابل تمایل</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOL 5/5<sup>b</sup></td>
<td>0/25<sup>d</sup></td>
<td>0/40<sup>b</sup></td>
<td>0/45<sup>d</sup></td>
<td>0/50<sup>b</sup></td>
<td>0/55<sup>d</sup></td>
<td>0/60<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>SOL 6/0<sup>b</sup></td>
<td>0/40<sup>b</sup></td>
<td>0/55<sup>d</sup></td>
<td>0/60<sup>b</sup></td>
<td>0/65<sup>d</sup></td>
<td>0/70<sup>b</sup></td>
<td>0/75<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>SOL 7/0<sup>b</sup></td>
<td>0/60<sup>b</sup></td>
<td>0/70<sup>d</sup></td>
<td>0/75<sup>b</sup></td>
<td>0/80<sup>d</sup></td>
<td>0/85<sup>b</sup></td>
<td>0/90<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>SOL 8/0<sup>b</sup></td>
<td>0/70<sup>b</sup></td>
<td>0/80<sup>d</sup></td>
<td>0/85<sup>b</sup></td>
<td>0/90<sup>d</sup></td>
<td>0/95<sup>b</sup></td>
<td>1/00<sup>d</sup></td>
<td></td>
</tr>
</tbody>
</table>

* میانگین‌های که در یک هر متری توسط سطح 0/5 از مقادیر این مقادیر تفاوت معنی‌دار دارد.

1- از هفته سرانه تیمار‌های کود آنی مگا گرم بر هكتار و کود شیمیایی در فرآیند 45 کیلوگرم اوره و 65 کیلوگرم فسفات آمونیوم بر

نتایج داده (جدول 2) در تبادلی مشاهده می‌شود که مقدار مقادیر متوسط لجن فاضلاب شامل محلول را است. در حالی
که مقدار می‌روی با کاربرد مقادیر بالا نیز محلول فاضلاب
باباد. افزایش دفعات کوددهی به ویژه در فصول 50 تا 100
مگا گرم در هکتار باعث افزایش سرب قابل جذب شده است.

بست

| 2- شکل تبادلی نیکل (EXC) |

بین تیمار شاهد و کود شیمیایی اختلاف معنی‌داری مشاهده نمی‌شود. لیکن استفاده از لجن فاضلاب مقادیر نیکل تبادلی در
افزایش داده است، به گونه که بین مقدار نیکل تبادلی در
تیمارهای فرعي 100¹⁰ با 100¹⁰ مشاهده می‌شود.

(جدول 3).

1- اثر لجن فاضلاب بر شکل‌های شیمیایی نیکل خاک

| 1- شکل محلول نیکل (SOL) |

شکل محلول نیکل در اگه تیمارهای لجن فاضلاب با شاهد
و کود شیمیایی اختلاف معنی‌داری ندارد. تیمار 5 مگا گرم لجن
فاضلاب با میانگین 1/05 mg kg⁻¹ بالاترین مقدار Ni محلول را

27
3. شکل کربنیت‌های نیکل

شکل کربنیت‌های نیکل در اغلب تیمارهای به کار رفته تفاوت معنی‌داری با تیمار شاهد نشان داد نشان معطات افزایشی نیکل کربنیت‌های به نسبت دفعات کاربرد کود تنا در کرت اصلی 100 مگا گرم به هکتار مشاهده گردید. که در آن با افزایش دفعات کود گرمی بر مقدار نیکل کربنیت‌های افزوده شده و انگه در کرت فروع 33% 1000 مگا گرم در سیب تیمارها بیشتر گردید (جدول 3). ممکن است افزایش شکل کربنیت‌های به دلیل افزایش کود لجن فاضلاب بر سرعت نفس میکروبی و تولید دی اکسید کربن در محیط خاک باشد که منجر به افزایش شکل های کربنیت‌های گردیده است (جدول 3).

4. شکل حیض شده نیکل

بین مقدار نیکل حیض شده و تیمار شاهد و کربن‌شیمیایی تفاوت معنی‌داری مشاهده نمی‌شود. تیمار شاهد همچنین با تیمار اصلی 25 مگا گرم به هکتار لجن فاضلاب اختلاف نشان نداد. در کرت اصلی 5 مگا گرم به هکتار، بین دوبار بیشتر کودهای اختلاف معنی‌داری وجود ندارد. اما کرت فرعي یک بار کودهای شده حاوی نیکل حیض شده بیشتری است. به کاربرد دیگر افرودن کود در دفعات متعدد باعث خروج نیکل از حیض شده کودهای اصلی 100 مگا گرم به هکتار نیکل فاضلاب دفعات کودهای منجر به کاهش نیکل حیض شده است. دوبار به نظر می‌رسد که گذشت زمان از آخرین بار کودهای منجر به انتقال نیکل به شکل حیض شده گردیده است.

5. شکل آلی نیکل

بین مقدار نیکل آلی در تیمار شاهد و کربن‌شیمیایی اختلاف قابل توجهی وجود ندارد. دفعات مختلف کودهای در سطح 15 مگا گرم به هکتار نیکل تفاوت معنی‌داری با تیمار شاهد ایجاد نکرد است. این وجود اختلاف اندکی بین سطح 25 مگا گرم در هکتار و تیمار شاهد مشاهده می‌شود (جدول 3).}

48
جدول ۲. شکل‌های مختلف کادمیم خاک، تیمار شده با لجن فاضلاب در مقایسه با شاهد و کود شیمیایی (mg kg⁻¹)

<table>
<thead>
<tr>
<th>محلول (SOL)</th>
<th>نمادی (EXC)</th>
<th>کربنات (CAR)</th>
<th>حس (OCC)</th>
<th>آب (ORG)</th>
<th>باقیمانده (RES)</th>
<th>کال</th>
<th>تیمار</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>اثر لجن</td>
</tr>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>فاضلاب</td>
</tr>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>به شکل</td>
</tr>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>نیایش</td>
</tr>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>می‌باشد</td>
</tr>
<tr>
<td>N.D</td>
<td>N.D</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>0/86bc</td>
<td>N.D</td>
<td>0/86bc</td>
<td>را تشکیل</td>
</tr>
</tbody>
</table>

* N.D: حذف از حد تشخیص دستگاه
** بیانگی‌هایی که در هر سون در یک حرف مشترک هستند در سطح ۵% آزمون دلگان تفاوت معناداری ندارند.

(۱) واحد وزنی تیمارهای کود آنی مگا گرم بر هکتار و کود شیمیایی در هر سال ۱۵۰ کیلوگرم اوره و ۴۵۰ کیلولیتر آمونیوم بر هکتار می‌باشد.

(۲) طور کلی توزیع نسبی شکل‌های مختلف تیمار در شکل‌های مختلف را می‌توان به صورت زیر بیان نمود:

- باقیمانده = آنی = حس شده = کربناته = محلول = نمادی
3. شکل کربنیت کادمیم

به غیر از تیمارهایی که به دفعات مختلف ۱۰۰ مگا گرم بر هكتار لنج فاضلاب دریافت کرده‌بودند، بین سایر تیمارهای اختلاف معناداری مشاهده نگردید. این که افزایش فعالیت میکرووری و متعاقب آن ورود دی اکسید کربن باعث افزایش شکل‌های کربنیتی کادمیم شد که باشند. مانند آنچه در مورد نیکل و سرب گفته شد محتول است زیرا با افزایش موارد آلی و در نتیجه افزایش فعالیت میکرووری، مقدار CO2 تولیدی در خاک افزایش می‌یابد که می‌تواند باعث افزایش شکل کربنیتی کادمیم شود.

4. شکل حبس شده کادمیم

مقادیر کادمیم حبس شده در تیمارهای شاهد و کود کاریمی اختلاف معناداری نشان ندادند. دفعات مختلف کوده ۵۰ مگا گرم بر هکتار نیز نتایج قابل توجهی بر کادمیم حبس شده بر جای نگذاشت. بنابراین به کار بردن مقدار بیشتر لنج فاضلاب (شامل تمام دفعات کوده ۵۰ و ۱۰۰ مگا گرم بر هکتار) باعث افزایش معنادار کادمیم حبس شده نسبت به تیمار شاهد گردیده است.

5. شکل آلی کادمیم

کادمیم آلی در تیمارهای شاهد، کود کاریمی و تمام دفعات کوده ۵۰ مگا گرم در هکتار کمتر از حد شخصی دستگاه بود. لیکن در سطوح بالای، تقریباً به نسبت مقدار و سطح کوده افزایش یافته است. این افزایش را مانند آنچه در مورد سرب و نیکل گفته شد می‌توان به فوریت لیگانده‌های آلی در آن تیمارها مربوط دانست.

6. شکل باقی مانده کادمیم

میزان کادمیم باقی مانده در تیمارهای کادمیم آلی در مقایسه با شاهد و کود کاریمی معنادار نشدند (جدول ۴). می‌توان گفت که تغییرات کادمیم در کود آلی اندازه‌بندی مقدار کمی در ساختار...
جدول 5: همبستگی مقدار قالب جذب (عصاره‌گیری شده با DTPA) با شکل‌های مختلف فلزات

<table>
<thead>
<tr>
<th>Pb</th>
<th>Ni</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/13</td>
<td>0/42</td>
<td>0/50</td>
</tr>
<tr>
<td>0/12</td>
<td>0/85*</td>
<td>0/16</td>
</tr>
<tr>
<td>0/30</td>
<td>0/68*</td>
<td>0/06</td>
</tr>
<tr>
<td>0/51</td>
<td>0/83*</td>
<td>0/53</td>
</tr>
<tr>
<td>0/91*</td>
<td>0/84*</td>
<td>0/01</td>
</tr>
<tr>
<td>0/01</td>
<td>0/23</td>
<td>0/08</td>
</tr>
<tr>
<td>0/93**</td>
<td>0/15</td>
<td>0/22</td>
</tr>
</tbody>
</table>

شکل‌های مختلف

1. به ترتیب دنده مبتنی، شکل در سطوح 0 و 1/2 می‌باشد.

* و ** به ترتیب دنده مبتنی، شکل در سطوح 0 و 1/2 می‌باشد.

نتایج گیری

از روند کود لجن فلزات در سطوح و دفعات مختلف باعث افزایش مقدار قالب سرب و کادمی می‌گردد. لیکن تأثیر قالب توجه بی‌نیکل کل یا نگل‌شکار دائمی در محدوده قابل قبول جذب یا انتشار نیز مشاهده می‌گردد.

tabular}{|c|c|c|}
\hline
\textbf{Pb} & \textbf{Ni} & \textbf{Cd} \\
\hline
0/13 & 0/42 & 0/50 \\
0/12 & 0/85* & 0/16 \\
0/30 & 0/68* & 0/06 \\
0/51 & 0/83* & 0/53 \\
0/91* & 0/84* & 0/01 \\
0/01 & 0/23 & 0/08 \\
0/93** & 0/15 & 0/22 \\
\hline

شکل‌ها

1. فرم بادنی داشته، که درآمده و قارچ‌تنی بی‌کیل در ساختار اکسیژنی کمی های دیده شده است. البته و پالیگورسپین (6) و افزایش قارچ بادنی می‌باشد. ترتیب کلی: فاکتور تحرک فلزات کادمیم، سرب و بی‌کیل می‌توان به صورت زیر تعبیر داد:

\[
\text{Cd} > \text{Pb} > \text{Ni}
\]

فرزین فاکتور تحرک کادمیم در مقایسه با سرب و بی‌کیل، فرضیه آموزشی کادمیم به آمادگی در اثر خاک را توییست می‌نماید. باعث این آمادگی روش جهت در آمد، افزایش محیط و ضعیف کادمیم در ازب عمق خالی، لجن فلزات به خاک صورت گرفت. تا ساخت این ضریب مورد آزمایش قرار گرفت.

همبستگی مقدار قالب جذب فلزات با شکل‌های مختلف

ضرایب همبستگی بین مقدار قالب جذب فلزات سرب و کادمیم در جدول 5 نشان داده شده است. کودهای با لجن فلزات به افزایش سرب کل خاک گردد، که نشان دهنده حضور سرب در مقدار قالب توجه در این کود می‌باشد (1). از سوی دیگر، کل سرب در مقدار قالب جذب سرب در خاک همبستگی معنی‌داری ملاحظه گردید. که

www.SID.ir
لجن فاضلاب تغییر سهم هر یک از شکل‌های مختلف فلزات در خاک، بوده تا در هر یک از این شکل‌ها و در سه واقعیت مطالعات افراز بافت، این افراز در مورد غلتک‌های جدید تین مهارده گردد که نشان می‌دهد با نداوم کوددهی با لجن فاضلاب ممکن است باعث مطالعه می‌گردد که در داخل زنجیره‌های غذایی گردند. بیشترین فاکتور تحرک در بین عنصر مورد مطالعه در مورد کادمیم ملایمه گردد. چنین به نظر می‌رسد تنها شکلی که در هر عنصر مورد مطالعه با مقدار قابل جذب (قابل عصاره‌گیری با DTPA) همیشه نشان می‌دهد.

متابع مورد استفاده

1. خدرویی، ا. ۱۳۸۲. اثر فلزات آلی بر کیفیت محیطی فلاتر سنتی در خاک و جذب این عنصر توسط گندم. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
2. خیامیانی، ب. ۱۳۷۶. اثرات استفاده از لجن فاضلاب به عنوان کود در آهی و ایجاد عنصر سنگین در خاک و گیاه. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
3. سالاری، ع. ۱۳۷۱. حاضرین خاصیت خاک. انتشارات دانشگاه تهران.
4. سالک کیلیایی، س. ۱۳۸۲. بررسی شدت تریپلفاسون در یک خاک آهوی تیمار شده با کودهای آلی مختلف. پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
5. کوچکی، ع. غ. خ. فرش و خ. ظرف کتاب (مرحجان). ۱۳۷۶. کشاورزی، انتشارات مشهد.
6. لکران، ا. ۱۳۷۸. چگونگی تشکیل تکامل و بررسی خصوصیات کاتیون‌های رسی خاک‌های مسی خمینی شهر در مزرعه آزمایش.

پایان نامه کارشناسی ارشد خاکشناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.